Greenhouse gas production in degrading ice-rich permafrost deposits in northeastern Siberia

Permafrost deposits have been a sink for atmospheric carbon for millennia. Thaw-erosional processes, however, can lead to rapid degradation of ice-rich permafrost and the release of substantial amounts of organic carbon (OC). The amount of the OC stored in these deposits and their potential to be mi...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: J. Walz, C. Knoblauch, R. Tigges, T. Opel, L. Schirrmeister, E.-M. Pfeiffer
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2018
Subjects:
Ice
Online Access:https://doi.org/10.5194/bg-15-5423-2018
https://doaj.org/article/d4c8ebe5a78e4324afe933b35db08a7f
Description
Summary:Permafrost deposits have been a sink for atmospheric carbon for millennia. Thaw-erosional processes, however, can lead to rapid degradation of ice-rich permafrost and the release of substantial amounts of organic carbon (OC). The amount of the OC stored in these deposits and their potential to be microbially decomposed to the greenhouse gases carbon dioxide (CO 2 ) and methane (CH 4 ) depends on climatic and environmental conditions during deposition and the decomposition history before incorporation into the permafrost. Here, we examine potential greenhouse gas production as a result of degrading ice-rich permafrost deposits from three locations in the northeastern Siberian Laptev Sea region. The deposits span a period of about 55 kyr from the last glacial period and Holocene interglacial. Samples from all three locations were incubated under aerobic and anaerobic conditions for 134 days at 4 °C. Greenhouse gas production was generally higher in deposits from glacial periods, where 0.2 %–6.1 % of the initially available OC was decomposed to CO 2 . In contrast, only 0.1 %–4.0 % of initial OC was decomposed in permafrost deposits from the Holocene and the late glacial transition. Within the deposits from the Kargin interstadial period (Marine Isotope Stage 3), local depositional environments, especially soil moisture, also affected the preservation of OC. Sediments deposited under wet conditions contained more labile OC and thus produced more greenhouse gases than sediments deposited under drier conditions. To assess the greenhouse gas production potentials over longer periods, deposits from two locations were incubated for a total of 785 days. However, more than 50 % of total CO 2 production over 785 days occurred within the first 134 days under aerobic conditions, while 80 % were produced over the same period under anaerobic conditions, which emphasizes the nonlinearity of the OC decomposition processes. Methanogenesis was generally observed in active layer samples but only sporadically in permafrost samples ...