Spatial and temporal conversion of nitrogen using Arthrobacter sp. 24S4–2, a strain obtained from Antarctica
According to average nucleotide identity (ANI) analysis of the complete genomes, strain 24S4–2 isolated from Antarctica is considered as a potential novel Arthrobacter species. Arthrobacter sp. 24S4–2 could grow and produce ammonium in nitrate or nitrite or even nitrogen free medium. Strain 24S4–2 w...
Published in: | Frontiers in Microbiology |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Frontiers Media S.A.
2023
|
Subjects: | |
Online Access: | https://doi.org/10.3389/fmicb.2023.1040201 https://doaj.org/article/d0126a913a194eac9985cfdc1e1adcbb |
id |
ftdoajarticles:oai:doaj.org/article:d0126a913a194eac9985cfdc1e1adcbb |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:d0126a913a194eac9985cfdc1e1adcbb 2023-05-15T13:32:38+02:00 Spatial and temporal conversion of nitrogen using Arthrobacter sp. 24S4–2, a strain obtained from Antarctica Yixuan Liu Yumin Zhang Yudi Huang Jingjing Niu Jun Huang Xiaoya Peng Fang Peng 2023-02-01T00:00:00Z https://doi.org/10.3389/fmicb.2023.1040201 https://doaj.org/article/d0126a913a194eac9985cfdc1e1adcbb EN eng Frontiers Media S.A. https://www.frontiersin.org/articles/10.3389/fmicb.2023.1040201/full https://doaj.org/toc/1664-302X 1664-302X doi:10.3389/fmicb.2023.1040201 https://doaj.org/article/d0126a913a194eac9985cfdc1e1adcbb Frontiers in Microbiology, Vol 14 (2023) Arthrobacter aerobic DNRA nitrogen storage vesicle structure spatial and temporal transformation of nitrogen Antarctica Microbiology QR1-502 article 2023 ftdoajarticles https://doi.org/10.3389/fmicb.2023.1040201 2023-02-19T01:45:44Z According to average nucleotide identity (ANI) analysis of the complete genomes, strain 24S4–2 isolated from Antarctica is considered as a potential novel Arthrobacter species. Arthrobacter sp. 24S4–2 could grow and produce ammonium in nitrate or nitrite or even nitrogen free medium. Strain 24S4–2 was discovered to accumulate nitrate/nitrite and subsequently convert nitrate to nitrite intracellularly when incubated in a nitrate/nitrite medium. In nitrogen-free medium, strain 24S4–2 not only reduced the accumulated nitrite for growth, but also secreted ammonia to the extracellular under aerobic condition, which was thought to be linked to nitrite reductase genes nirB, nirD, and nasA by the transcriptome and RT-qPCR analysis. A membrane-like vesicle structure was detected in the cell of strain 24S4–2 by transmission electron microscopy, which was thought to be the site of intracellular nitrogen supply accumulation and conversion. This spatial and temporal conversion process of nitrogen source helps the strain maintain development in the absence of nitrogen supply or a harsh environment, which is part of its adaption strategy to the Antarctic environment. This process may also play an important ecological role, that other bacteria in the environment would benefit from its extracellular nitrogen source secretion and nitrite consumption characteristics. Article in Journal/Newspaper Antarc* Antarctic Antarctica Directory of Open Access Journals: DOAJ Articles Antarctic The Antarctic Frontiers in Microbiology 14 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Arthrobacter aerobic DNRA nitrogen storage vesicle structure spatial and temporal transformation of nitrogen Antarctica Microbiology QR1-502 |
spellingShingle |
Arthrobacter aerobic DNRA nitrogen storage vesicle structure spatial and temporal transformation of nitrogen Antarctica Microbiology QR1-502 Yixuan Liu Yumin Zhang Yudi Huang Jingjing Niu Jun Huang Xiaoya Peng Fang Peng Spatial and temporal conversion of nitrogen using Arthrobacter sp. 24S4–2, a strain obtained from Antarctica |
topic_facet |
Arthrobacter aerobic DNRA nitrogen storage vesicle structure spatial and temporal transformation of nitrogen Antarctica Microbiology QR1-502 |
description |
According to average nucleotide identity (ANI) analysis of the complete genomes, strain 24S4–2 isolated from Antarctica is considered as a potential novel Arthrobacter species. Arthrobacter sp. 24S4–2 could grow and produce ammonium in nitrate or nitrite or even nitrogen free medium. Strain 24S4–2 was discovered to accumulate nitrate/nitrite and subsequently convert nitrate to nitrite intracellularly when incubated in a nitrate/nitrite medium. In nitrogen-free medium, strain 24S4–2 not only reduced the accumulated nitrite for growth, but also secreted ammonia to the extracellular under aerobic condition, which was thought to be linked to nitrite reductase genes nirB, nirD, and nasA by the transcriptome and RT-qPCR analysis. A membrane-like vesicle structure was detected in the cell of strain 24S4–2 by transmission electron microscopy, which was thought to be the site of intracellular nitrogen supply accumulation and conversion. This spatial and temporal conversion process of nitrogen source helps the strain maintain development in the absence of nitrogen supply or a harsh environment, which is part of its adaption strategy to the Antarctic environment. This process may also play an important ecological role, that other bacteria in the environment would benefit from its extracellular nitrogen source secretion and nitrite consumption characteristics. |
format |
Article in Journal/Newspaper |
author |
Yixuan Liu Yumin Zhang Yudi Huang Jingjing Niu Jun Huang Xiaoya Peng Fang Peng |
author_facet |
Yixuan Liu Yumin Zhang Yudi Huang Jingjing Niu Jun Huang Xiaoya Peng Fang Peng |
author_sort |
Yixuan Liu |
title |
Spatial and temporal conversion of nitrogen using Arthrobacter sp. 24S4–2, a strain obtained from Antarctica |
title_short |
Spatial and temporal conversion of nitrogen using Arthrobacter sp. 24S4–2, a strain obtained from Antarctica |
title_full |
Spatial and temporal conversion of nitrogen using Arthrobacter sp. 24S4–2, a strain obtained from Antarctica |
title_fullStr |
Spatial and temporal conversion of nitrogen using Arthrobacter sp. 24S4–2, a strain obtained from Antarctica |
title_full_unstemmed |
Spatial and temporal conversion of nitrogen using Arthrobacter sp. 24S4–2, a strain obtained from Antarctica |
title_sort |
spatial and temporal conversion of nitrogen using arthrobacter sp. 24s4–2, a strain obtained from antarctica |
publisher |
Frontiers Media S.A. |
publishDate |
2023 |
url |
https://doi.org/10.3389/fmicb.2023.1040201 https://doaj.org/article/d0126a913a194eac9985cfdc1e1adcbb |
geographic |
Antarctic The Antarctic |
geographic_facet |
Antarctic The Antarctic |
genre |
Antarc* Antarctic Antarctica |
genre_facet |
Antarc* Antarctic Antarctica |
op_source |
Frontiers in Microbiology, Vol 14 (2023) |
op_relation |
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1040201/full https://doaj.org/toc/1664-302X 1664-302X doi:10.3389/fmicb.2023.1040201 https://doaj.org/article/d0126a913a194eac9985cfdc1e1adcbb |
op_doi |
https://doi.org/10.3389/fmicb.2023.1040201 |
container_title |
Frontiers in Microbiology |
container_volume |
14 |
_version_ |
1766028785728094208 |