Snowcover Survey over an Arctic Glacier Forefield: Contribution of Photogrammetry to Identify “Icing” Variability and Processes

The global climate shift currently underway has significant impacts on both the quality and quantity of snow precipitation. This directly influences the spatial variability of the snowpack as well as cumulative snow height. Contemporary glacier retreat reorganizes periglacial morphology: while the g...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Éric Bernard, Jean-Michel Friedt, Madeleine Griselin
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2021
Subjects:
Q
Online Access:https://doi.org/10.3390/rs13101978
https://doaj.org/article/cdaf8e3a878c40c48b1db38c48cb8798
id ftdoajarticles:oai:doaj.org/article:cdaf8e3a878c40c48b1db38c48cb8798
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:cdaf8e3a878c40c48b1db38c48cb8798 2023-05-15T14:53:11+02:00 Snowcover Survey over an Arctic Glacier Forefield: Contribution of Photogrammetry to Identify “Icing” Variability and Processes Éric Bernard Jean-Michel Friedt Madeleine Griselin 2021-05-01T00:00:00Z https://doi.org/10.3390/rs13101978 https://doaj.org/article/cdaf8e3a878c40c48b1db38c48cb8798 EN eng MDPI AG https://www.mdpi.com/2072-4292/13/10/1978 https://doaj.org/toc/2072-4292 doi:10.3390/rs13101978 2072-4292 https://doaj.org/article/cdaf8e3a878c40c48b1db38c48cb8798 Remote Sensing, Vol 13, Iss 1978, p 1978 (2021) snowcover snow water equivalent cryosphere moraine arctic UAV-SfM Science Q article 2021 ftdoajarticles https://doi.org/10.3390/rs13101978 2022-12-31T15:34:46Z The global climate shift currently underway has significant impacts on both the quality and quantity of snow precipitation. This directly influences the spatial variability of the snowpack as well as cumulative snow height. Contemporary glacier retreat reorganizes periglacial morphology: while the glacier area decreases, the moraine area increases. The latter is becoming a new water storage potential that is almost as important as the glacier itself, but with considerably more complex topography. Hence, this work fills one of the missing variables of the hydrological budget equation of an arctic glacier basin by providing an estimate of the snow water equivalent (SWE) of the moraine contribution. Such a result is achieved by investigating Structure from Motion (SfM) image processing that is applied to pictures collected from an Unmanned Aerial Vehicle (UAV) as a method for producing snow depth maps over the proglacial moraine area. Several UAV campaigns were carried out on a small glacial basin in Spitsbergen (Arctic): the measurements were made at the maximum snow accumulation season (late April), while the reference topography maps were acquired at the end of the hydrological year (late September) when the moraine is mostly free of snow. The snow depth is determined from Digital Surface Model (DSM) subtraction. Utilizing dedicated and natural ground control points for relative positioning of the DSMs, the relative DSM georeferencing with sub-meter accuracy removes the main source of uncertainty when assessing snow depth. For areas where snow is deposited on bare rock surfaces, the correlation between avalanche probe in-situ snow depth measurements and DSM differences is excellent. Differences in ice covered areas between the two measurement techniques are attributed to the different quantities measured: while the former only measures snow accumulation, the latter includes all of the ice accumulation during winter through which the probe cannot penetrate, in addition to the snow cover. When such inconsistencies ... Article in Journal/Newspaper Arctic ice covered areas Spitsbergen Directory of Open Access Journals: DOAJ Articles Arctic Bare Rock ENVELOPE(-45.589,-45.589,-60.704,-60.704) Remote Sensing 13 10 1978
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic snowcover
snow water equivalent
cryosphere
moraine
arctic
UAV-SfM
Science
Q
spellingShingle snowcover
snow water equivalent
cryosphere
moraine
arctic
UAV-SfM
Science
Q
Éric Bernard
Jean-Michel Friedt
Madeleine Griselin
Snowcover Survey over an Arctic Glacier Forefield: Contribution of Photogrammetry to Identify “Icing” Variability and Processes
topic_facet snowcover
snow water equivalent
cryosphere
moraine
arctic
UAV-SfM
Science
Q
description The global climate shift currently underway has significant impacts on both the quality and quantity of snow precipitation. This directly influences the spatial variability of the snowpack as well as cumulative snow height. Contemporary glacier retreat reorganizes periglacial morphology: while the glacier area decreases, the moraine area increases. The latter is becoming a new water storage potential that is almost as important as the glacier itself, but with considerably more complex topography. Hence, this work fills one of the missing variables of the hydrological budget equation of an arctic glacier basin by providing an estimate of the snow water equivalent (SWE) of the moraine contribution. Such a result is achieved by investigating Structure from Motion (SfM) image processing that is applied to pictures collected from an Unmanned Aerial Vehicle (UAV) as a method for producing snow depth maps over the proglacial moraine area. Several UAV campaigns were carried out on a small glacial basin in Spitsbergen (Arctic): the measurements were made at the maximum snow accumulation season (late April), while the reference topography maps were acquired at the end of the hydrological year (late September) when the moraine is mostly free of snow. The snow depth is determined from Digital Surface Model (DSM) subtraction. Utilizing dedicated and natural ground control points for relative positioning of the DSMs, the relative DSM georeferencing with sub-meter accuracy removes the main source of uncertainty when assessing snow depth. For areas where snow is deposited on bare rock surfaces, the correlation between avalanche probe in-situ snow depth measurements and DSM differences is excellent. Differences in ice covered areas between the two measurement techniques are attributed to the different quantities measured: while the former only measures snow accumulation, the latter includes all of the ice accumulation during winter through which the probe cannot penetrate, in addition to the snow cover. When such inconsistencies ...
format Article in Journal/Newspaper
author Éric Bernard
Jean-Michel Friedt
Madeleine Griselin
author_facet Éric Bernard
Jean-Michel Friedt
Madeleine Griselin
author_sort Éric Bernard
title Snowcover Survey over an Arctic Glacier Forefield: Contribution of Photogrammetry to Identify “Icing” Variability and Processes
title_short Snowcover Survey over an Arctic Glacier Forefield: Contribution of Photogrammetry to Identify “Icing” Variability and Processes
title_full Snowcover Survey over an Arctic Glacier Forefield: Contribution of Photogrammetry to Identify “Icing” Variability and Processes
title_fullStr Snowcover Survey over an Arctic Glacier Forefield: Contribution of Photogrammetry to Identify “Icing” Variability and Processes
title_full_unstemmed Snowcover Survey over an Arctic Glacier Forefield: Contribution of Photogrammetry to Identify “Icing” Variability and Processes
title_sort snowcover survey over an arctic glacier forefield: contribution of photogrammetry to identify “icing” variability and processes
publisher MDPI AG
publishDate 2021
url https://doi.org/10.3390/rs13101978
https://doaj.org/article/cdaf8e3a878c40c48b1db38c48cb8798
long_lat ENVELOPE(-45.589,-45.589,-60.704,-60.704)
geographic Arctic
Bare Rock
geographic_facet Arctic
Bare Rock
genre Arctic
ice covered areas
Spitsbergen
genre_facet Arctic
ice covered areas
Spitsbergen
op_source Remote Sensing, Vol 13, Iss 1978, p 1978 (2021)
op_relation https://www.mdpi.com/2072-4292/13/10/1978
https://doaj.org/toc/2072-4292
doi:10.3390/rs13101978
2072-4292
https://doaj.org/article/cdaf8e3a878c40c48b1db38c48cb8798
op_doi https://doi.org/10.3390/rs13101978
container_title Remote Sensing
container_volume 13
container_issue 10
container_start_page 1978
_version_ 1766324601939296256