Bartonella infections in three species of Microtus: prevalence and genetic diversity, vertical transmission and the effect of concurrent Babesia microti infection on its success

Abstract Background Bartonella spp. cause persistent bacterial infections in mammals. Although these bacteria are transmitted by blood-feeding arthropods, there is also evidence for vertical transmission in their mammalian hosts. We aimed to determine: (i) the prevalence and diversity of Bartonella...

Full description

Bibliographic Details
Published in:Parasites & Vectors
Main Authors: Katarzyna Tołkacz, Mohammed Alsarraf, Maciej Kowalec, Dorota Dwużnik, Maciej Grzybek, Jerzy M. Behnke, Anna Bajer
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2018
Subjects:
Online Access:https://doi.org/10.1186/s13071-018-3047-6
https://doaj.org/article/caa87123144c40acaa4aa8576564870b
Description
Summary:Abstract Background Bartonella spp. cause persistent bacterial infections in mammals. Although these bacteria are transmitted by blood-feeding arthropods, there is also evidence for vertical transmission in their mammalian hosts. We aimed to determine: (i) the prevalence and diversity of Bartonella spp. in a Microtus spp. community; (ii) whether vertical transmission occurs from infected female voles to their offspring; (iii) the effect of concurrent Babesia microti infection on the success of vertical transmission of Bartonella; and (iv) the impact of congenital infection on pup survival. Results We sampled 124 Microtus arvalis, 76 Microtus oeconomus and 17 Microtus agrestis. In total, 115 embryos were isolated from 21 pregnant females. In the following year 11 pregnant females were kept until they had given birth and weaned their pups (n = 62). Blood smears and PCR targeting the Bartonella-specific rpoB gene fragment (333bp) were used for the detection of Bartonella. Bartonella DNA was detected in 66.8% (145/217) of the wild-caught voles. Bartonella infection was detected in 81.8% (36/44) of pregnant female voles. Bartonella-positive individuals were identified among the embryos (47.1%; 40/85) and in 54.8% (34/62) of pups. Congenitally acquired Bartonella infections and co-infection with B. microti had no impact on the survival of pups over a 3-week period post partum. Among 113 Bartonella sequences, four species were detected: Bartonella taylorii, Bartonella grahamii, Bartonella doshiae and a Bartonella rochalimae-like genotype. Bartonella taylorii clade B was the dominant species in wild-caught voles (49%), pregnant females (47%), their embryos (85%), dams (75%) and pups (95%). Conclusions High prevalence of Bartonella spp. infection maintained in Microtus spp. community is followed by a high rate of vertical transmission of several rodent species of Bartonella in three species of naturally infected voles, M. arvalis, M. oeconomus and M. agrestis. Congenitally acquired Bartonella infection does not affect ...