Surface energy fluxes on Chilean glaciers: measurements and models
The surface energy fluxes of glaciers determine surface melt, and their adequate parametrization is one of the keys to a successful prediction of future glacier mass balance and freshwater discharge. Chile hosts glaciers in a large range of latitudes under contrasting climatic settings: from 18 ∘ S...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2020
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-14-2545-2020 https://doaj.org/article/ca3878d3f998430e8c24c8317175fe69 |
id |
ftdoajarticles:oai:doaj.org/article:ca3878d3f998430e8c24c8317175fe69 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:ca3878d3f998430e8c24c8317175fe69 2023-05-15T18:32:29+02:00 Surface energy fluxes on Chilean glaciers: measurements and models M. Schaefer D. Fonseca-Gallardo D. Farías-Barahona G. Casassa 2020-08-01T00:00:00Z https://doi.org/10.5194/tc-14-2545-2020 https://doaj.org/article/ca3878d3f998430e8c24c8317175fe69 EN eng Copernicus Publications https://tc.copernicus.org/articles/14/2545/2020/tc-14-2545-2020.pdf https://doaj.org/toc/1994-0416 https://doaj.org/toc/1994-0424 doi:10.5194/tc-14-2545-2020 1994-0416 1994-0424 https://doaj.org/article/ca3878d3f998430e8c24c8317175fe69 The Cryosphere, Vol 14, Pp 2545-2565 (2020) Environmental sciences GE1-350 Geology QE1-996.5 article 2020 ftdoajarticles https://doi.org/10.5194/tc-14-2545-2020 2023-01-08T01:29:11Z The surface energy fluxes of glaciers determine surface melt, and their adequate parametrization is one of the keys to a successful prediction of future glacier mass balance and freshwater discharge. Chile hosts glaciers in a large range of latitudes under contrasting climatic settings: from 18 ∘ S in the Atacama Desert to 55 ∘ S on Tierra del Fuego. Using three different methods, we computed surface energy fluxes for five glaciers which represent the main glaciological zones of Chile. We found the main energy sources for surface melt change from the Central Andes, where the net shortwave radiation is driving the melt, to Patagonia, where the turbulent fluxes are an important source of energy. We inferred higher surface melt rates for Patagonian glaciers as compared to the glaciers of the Central Andes due to a higher contribution of the turbulent sensible heat flux, less negative net longwave radiation and a positive contribution of the turbulent latent heat flux. The variability in the atmospheric emissivity was high and not able to be explained exclusively by the variability in the inferred cloud cover. The influence of the stability correction and the roughness length on the magnitude of the turbulent fluxes in the different climate settings was examined. We conclude that, when working towards physical melt models, it is not sufficient to use the observed melt as a measure of model performance; the model parametrizations of individual components of the energy balance have to be validated individually against measurements. Article in Journal/Newspaper The Cryosphere Tierra del Fuego Directory of Open Access Journals: DOAJ Articles Patagonia The Cryosphere 14 8 2545 2565 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Environmental sciences GE1-350 Geology QE1-996.5 |
spellingShingle |
Environmental sciences GE1-350 Geology QE1-996.5 M. Schaefer D. Fonseca-Gallardo D. Farías-Barahona G. Casassa Surface energy fluxes on Chilean glaciers: measurements and models |
topic_facet |
Environmental sciences GE1-350 Geology QE1-996.5 |
description |
The surface energy fluxes of glaciers determine surface melt, and their adequate parametrization is one of the keys to a successful prediction of future glacier mass balance and freshwater discharge. Chile hosts glaciers in a large range of latitudes under contrasting climatic settings: from 18 ∘ S in the Atacama Desert to 55 ∘ S on Tierra del Fuego. Using three different methods, we computed surface energy fluxes for five glaciers which represent the main glaciological zones of Chile. We found the main energy sources for surface melt change from the Central Andes, where the net shortwave radiation is driving the melt, to Patagonia, where the turbulent fluxes are an important source of energy. We inferred higher surface melt rates for Patagonian glaciers as compared to the glaciers of the Central Andes due to a higher contribution of the turbulent sensible heat flux, less negative net longwave radiation and a positive contribution of the turbulent latent heat flux. The variability in the atmospheric emissivity was high and not able to be explained exclusively by the variability in the inferred cloud cover. The influence of the stability correction and the roughness length on the magnitude of the turbulent fluxes in the different climate settings was examined. We conclude that, when working towards physical melt models, it is not sufficient to use the observed melt as a measure of model performance; the model parametrizations of individual components of the energy balance have to be validated individually against measurements. |
format |
Article in Journal/Newspaper |
author |
M. Schaefer D. Fonseca-Gallardo D. Farías-Barahona G. Casassa |
author_facet |
M. Schaefer D. Fonseca-Gallardo D. Farías-Barahona G. Casassa |
author_sort |
M. Schaefer |
title |
Surface energy fluxes on Chilean glaciers: measurements and models |
title_short |
Surface energy fluxes on Chilean glaciers: measurements and models |
title_full |
Surface energy fluxes on Chilean glaciers: measurements and models |
title_fullStr |
Surface energy fluxes on Chilean glaciers: measurements and models |
title_full_unstemmed |
Surface energy fluxes on Chilean glaciers: measurements and models |
title_sort |
surface energy fluxes on chilean glaciers: measurements and models |
publisher |
Copernicus Publications |
publishDate |
2020 |
url |
https://doi.org/10.5194/tc-14-2545-2020 https://doaj.org/article/ca3878d3f998430e8c24c8317175fe69 |
geographic |
Patagonia |
geographic_facet |
Patagonia |
genre |
The Cryosphere Tierra del Fuego |
genre_facet |
The Cryosphere Tierra del Fuego |
op_source |
The Cryosphere, Vol 14, Pp 2545-2565 (2020) |
op_relation |
https://tc.copernicus.org/articles/14/2545/2020/tc-14-2545-2020.pdf https://doaj.org/toc/1994-0416 https://doaj.org/toc/1994-0424 doi:10.5194/tc-14-2545-2020 1994-0416 1994-0424 https://doaj.org/article/ca3878d3f998430e8c24c8317175fe69 |
op_doi |
https://doi.org/10.5194/tc-14-2545-2020 |
container_title |
The Cryosphere |
container_volume |
14 |
container_issue |
8 |
container_start_page |
2545 |
op_container_end_page |
2565 |
_version_ |
1766216594745196544 |