The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane. Previous work has linked the nodal cycle to climate but has been limited by either the length of observations analysed or geographical regions considered in model simulations of the pre-industrial p...
Published in: | Earth System Dynamics |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2023
|
Subjects: | |
Online Access: | https://doi.org/10.5194/esd-14-443-2023 https://doaj.org/article/c81750f66d9e463599302103918dbfe3 |
id |
ftdoajarticles:oai:doaj.org/article:c81750f66d9e463599302103918dbfe3 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:c81750f66d9e463599302103918dbfe3 2023-06-11T04:14:13+02:00 The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends M. Joshi R. A. Hall D. P. Stevens E. Hawkins 2023-04-01T00:00:00Z https://doi.org/10.5194/esd-14-443-2023 https://doaj.org/article/c81750f66d9e463599302103918dbfe3 EN eng Copernicus Publications https://esd.copernicus.org/articles/14/443/2023/esd-14-443-2023.pdf https://doaj.org/toc/2190-4979 https://doaj.org/toc/2190-4987 doi:10.5194/esd-14-443-2023 2190-4979 2190-4987 https://doaj.org/article/c81750f66d9e463599302103918dbfe3 Earth System Dynamics, Vol 14, Pp 443-455 (2023) Science Q Geology QE1-996.5 Dynamic and structural geology QE500-639.5 article 2023 ftdoajarticles https://doi.org/10.5194/esd-14-443-2023 2023-04-23T00:35:04Z The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane. Previous work has linked the nodal cycle to climate but has been limited by either the length of observations analysed or geographical regions considered in model simulations of the pre-industrial period. Here we examine the global effect of the lunar nodal cycle in multi-centennial climate model simulations of the pre-industrial period. We find cyclic signals in global and regional surface air temperature (with amplitudes of around 0.1 K) and in ocean heat uptake and ocean heat content. The timing of anomalies of global surface air temperature and heat uptake is consistent with the so-called slowdown in global warming in the first decade of the 21st century. The lunar nodal cycle causes variations in mean sea level pressure exceeding 0.5 hPa in the Nordic Seas region, thus affecting the North Atlantic Oscillation during boreal winter. Our results suggest that the contribution of the lunar nodal cycle to global temperature should be negative in the mid-2020s before becoming positive again in the early 2030s, reducing the uncertainty in time at which projected global temperature reaches 1.5 ∘ C above pre-industrial levels. Article in Journal/Newspaper Nordic Seas North Atlantic North Atlantic oscillation Directory of Open Access Journals: DOAJ Articles Earth System Dynamics 14 2 443 455 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Science Q Geology QE1-996.5 Dynamic and structural geology QE500-639.5 |
spellingShingle |
Science Q Geology QE1-996.5 Dynamic and structural geology QE500-639.5 M. Joshi R. A. Hall D. P. Stevens E. Hawkins The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends |
topic_facet |
Science Q Geology QE1-996.5 Dynamic and structural geology QE500-639.5 |
description |
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane. Previous work has linked the nodal cycle to climate but has been limited by either the length of observations analysed or geographical regions considered in model simulations of the pre-industrial period. Here we examine the global effect of the lunar nodal cycle in multi-centennial climate model simulations of the pre-industrial period. We find cyclic signals in global and regional surface air temperature (with amplitudes of around 0.1 K) and in ocean heat uptake and ocean heat content. The timing of anomalies of global surface air temperature and heat uptake is consistent with the so-called slowdown in global warming in the first decade of the 21st century. The lunar nodal cycle causes variations in mean sea level pressure exceeding 0.5 hPa in the Nordic Seas region, thus affecting the North Atlantic Oscillation during boreal winter. Our results suggest that the contribution of the lunar nodal cycle to global temperature should be negative in the mid-2020s before becoming positive again in the early 2030s, reducing the uncertainty in time at which projected global temperature reaches 1.5 ∘ C above pre-industrial levels. |
format |
Article in Journal/Newspaper |
author |
M. Joshi R. A. Hall D. P. Stevens E. Hawkins |
author_facet |
M. Joshi R. A. Hall D. P. Stevens E. Hawkins |
author_sort |
M. Joshi |
title |
The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends |
title_short |
The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends |
title_full |
The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends |
title_fullStr |
The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends |
title_full_unstemmed |
The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends |
title_sort |
modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends |
publisher |
Copernicus Publications |
publishDate |
2023 |
url |
https://doi.org/10.5194/esd-14-443-2023 https://doaj.org/article/c81750f66d9e463599302103918dbfe3 |
genre |
Nordic Seas North Atlantic North Atlantic oscillation |
genre_facet |
Nordic Seas North Atlantic North Atlantic oscillation |
op_source |
Earth System Dynamics, Vol 14, Pp 443-455 (2023) |
op_relation |
https://esd.copernicus.org/articles/14/443/2023/esd-14-443-2023.pdf https://doaj.org/toc/2190-4979 https://doaj.org/toc/2190-4987 doi:10.5194/esd-14-443-2023 2190-4979 2190-4987 https://doaj.org/article/c81750f66d9e463599302103918dbfe3 |
op_doi |
https://doi.org/10.5194/esd-14-443-2023 |
container_title |
Earth System Dynamics |
container_volume |
14 |
container_issue |
2 |
container_start_page |
443 |
op_container_end_page |
455 |
_version_ |
1768392076367495168 |