Under-Ice Light Field in the Western Arctic Ocean During Late Summer

The Arctic is no longer a region dominated by thick multi-year ice (MYI), but by thinner, more dynamic, first-year-ice (FYI). This shift towards a seasonal ice cover has consequences for the under-ice light field, as sea-ice and its snow cover are a major factor influencing radiative transfer and th...

Full description

Bibliographic Details
Published in:Frontiers in Earth Science
Main Authors: Gaëlle Veyssière, Giulia Castellani, Jeremy Wilkinson, Michael Karcher, Alexander Hayward, Julienne C. Stroeve, Marcel Nicolaus, Joo-Hong Kim, Eun-Jin Yang, Lovro Valcic, Frank Kauker, Alia L. Khan, Indea Rogers, Jinyoung Jung
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media S.A. 2022
Subjects:
Q
Online Access:https://doi.org/10.3389/feart.2021.643737
https://doaj.org/article/c5593e577bca436fbce31dcb1e402ced
Description
Summary:The Arctic is no longer a region dominated by thick multi-year ice (MYI), but by thinner, more dynamic, first-year-ice (FYI). This shift towards a seasonal ice cover has consequences for the under-ice light field, as sea-ice and its snow cover are a major factor influencing radiative transfer and thus, biological activity within- and under the ice. This work describes in situ measurements of light transmission through different types of sea-ice (MYI and FYI) performed during two expeditions to the Chukchi sea in August 2018 and 2019, as well as a simple characterisation of the biological state of the ice microbial system. Our analysis shows that, in late summer, two different states of FYI exist in this region: 1) FYI in an enhanced state of decay, and 2) robust FYI, more likely to survive the melt season. The two FYI types have different average ice thicknesses: 0.74 ± 0.07 m (N = 9) and 0.93 ± 0.11 m (N = 9), different average values of transmittance: 0.15 ± 0.04 compared to 0.09 ± 0.02, and different ice extinction coefficients: 1.49 ± 0.28 and 1.12 ± 0.19 m−1. The measurements performed over MYI present different characteristics with a higher average ice thickness of 1.56 ± 0.12 m, lower transmittance (0.05 ± 0.01) with ice extinction coefficients of 1.24 ± 0.26 m−1 (N = 12). All ice types show consistently low salinity, chlorophyll a concentrations and nutrients, which may be linked to the timing of the measurements and the flushing of melt-water through the ice. With continued Arctic warming, the summer ice will continue to retreat, and the decayed variant of FYI, with a higher scattering of light, but a reduced thickness, leading to an overall higher light transmittance, may become a more relevant ice type. Our results suggest that in this scenario, more light would reach the ice interior and the upper-ocean.