Neuroprotection by misoprostol against rotenone-induced neurotoxicity in rat brain

Objective: To investigate the effect of the prostaglandin E1 analogue misoprostol on oxidative stress and neurodegeration caused by subcutaneous rotenone administration in rats. Methods: Rotenone was administered in a dose of 1.5 mg/kg every other day for 2 weeks. Starting from the 1st day of roteno...

Full description

Bibliographic Details
Published in:Asian Pacific Journal of Tropical Medicine
Main Authors: Omar M.E. Abdel-Salam, Amany A Sleem, Eman R Youness, Nadia A Mohammed, Enayat A Omara
Format: Article in Journal/Newspaper
Language:English
Published: Wolters Kluwer Medknow Publications 2018
Subjects:
Online Access:https://doi.org/10.4103/1995-7645.223532
https://doaj.org/article/c2685d7943f749b6a8c1f4219a2919a6
Description
Summary:Objective: To investigate the effect of the prostaglandin E1 analogue misoprostol on oxidative stress and neurodegeration caused by subcutaneous rotenone administration in rats. Methods: Rotenone was administered in a dose of 1.5 mg/kg every other day for 2 weeks. Starting from the 1st day of rotenone injection, rats were subcutaneously treated with misoprostol at doses of 10, 100 or 1 000 μ g/kg. Rats were evaluated for brain lipid peroxidation (malondialdehyde: MDA), reduced glutathione (GSH), nitric oxide (NO) levels, and paraoxonase-1 (PON-1) activity. The concentrations of the anti-apoptotic protein B cell/lymphoma-2 (Bcl-2) were determined in the striatum. Histopathologic examination and the expression of inducible nitric oxide synthase (iNOS) in the cerebral cortex and striatum were also performed. Results: Compared with the vehicle-treated group, rotenone caused a significant increase in brain lipid proxidation (MDA) by 61% (P<0.05) accompanied by an increase in NO by 73.1% (P<0.05) and a decrease in GSH concentration by 29.4% (P<0.05). In addition, brain PON-1 activity significantly decreased by 63.0% (P<0.05) and striatal Bcl-2 significantly decreased by 27.9% (P<0.05) with respect to the corresponding control value. Brain sections from rotenone treated rats showed extensive dark pyknotic and apoptotic nuclei in neurons, shrunken cytoplasm and perineuronal vacuolation. Rotenone also caused pronounced expression of iNOS in the cerebral cortex and striatum. Treatment with misoprostol at doses of 100 and 1 000 μ g/kg resulted in decreased brain MDA (by 16.5%-23.0%) (P<0.05) and NO levels (by 37.1%-40.7%) (P<0.05) and increased GSH concentrations (by 18.8%-30.1%) (P<0.05). PON-1 activity was significantly increased by 80.0%-114.8% (P<0.05) by misoprostol at 100 and 1 000 μ g/kg, respectively. In addition, misoprostol treatment restored striatal Bcl-2 concentrations to its normal value. Misoprostol treatment resulted in markedly reduced brain injury and decreased iNOS expression ...