Quantifying the free living energy exchanges of Arctic ungulates with stable isotopes

When natural diets meet an animal's requirement for energy, other essential nutrients will usually be supplied in amounts at least sufficient for survival. Knowledge of the energy requirements of free ranging species under typical conditions are important in assessing both their nutritional nee...

Full description

Bibliographic Details
Published in:Rangifer
Main Author: Paul Haggarty
Format: Article in Journal/Newspaper
Language:English
Published: Septentrio Academic Publishing 2000
Subjects:
Online Access:https://doi.org/10.7557/2.20.2-3.1480
https://doaj.org/article/c222d37350794823b63b0fdc74b0b0d2
id ftdoajarticles:oai:doaj.org/article:c222d37350794823b63b0fdc74b0b0d2
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:c222d37350794823b63b0fdc74b0b0d2 2023-05-15T14:53:12+02:00 Quantifying the free living energy exchanges of Arctic ungulates with stable isotopes Paul Haggarty 2000-03-01T00:00:00Z https://doi.org/10.7557/2.20.2-3.1480 https://doaj.org/article/c222d37350794823b63b0fdc74b0b0d2 EN eng Septentrio Academic Publishing https://septentrio.uit.no/index.php/rangifer/article/view/1480 https://doaj.org/toc/1890-6729 doi:10.7557/2.20.2-3.1480 1890-6729 https://doaj.org/article/c222d37350794823b63b0fdc74b0b0d2 Rangifer, Vol 20, Iss 2-3 (2000) energy exchange arctic ungulates Animal culture SF1-1100 article 2000 ftdoajarticles https://doi.org/10.7557/2.20.2-3.1480 2022-12-31T05:20:48Z When natural diets meet an animal's requirement for energy, other essential nutrients will usually be supplied in amounts at least sufficient for survival. Knowledge of the energy requirements of free ranging species under typical conditions are important in assessing both their nutritional needs and their ecological impact. The doubly labelled water (DLW) method is currently the most promising objective field methodology for estimating free living energy expenditure but expenditure is only equal to the energy requirement when an animal is in energy balance. Reproduction and seasonal cycles of fat deposition and utilization represent significant components of the energy budget of arctic ungulates but the information gained in the course of a typical DLW study may be used to estimate processes such as milk output and fat storage and mobilization in order to predict requirements from expenditure. The DLW method has been exhaustively validated under highly controlled conditions and the introduction of innovations such as faecal sampling for the estimation of body water isotopic enrichment, the availability of appropriate correction factors and stoichiometrics for known sources of error, and iterative calculation of unknown parameters, have produced a methodology suitable for use in truly free ranging species. The few studies carried out so far in arctic ungulates indicate that previous predictions have generally underestimated the true level of expenditure, that there is considerable between animal variation in the level of expenditure and that this is largely determined by physical activity. The disadvantages of the DLW methodology are that it remains expensive and the isotope analysis is technically demanding. Furthermore, although DLW can provide an accurate value for free living energy expenditure, it is often important to have information on the individual components of expenditure, for example the relative contribution of physical activity and thermoregulatory thermogenesis, in order to interpret the values ... Article in Journal/Newspaper Arctic Rangifer Directory of Open Access Journals: DOAJ Articles Arctic Rangifer 20 2-3 59
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic energy exchange
arctic ungulates
Animal culture
SF1-1100
spellingShingle energy exchange
arctic ungulates
Animal culture
SF1-1100
Paul Haggarty
Quantifying the free living energy exchanges of Arctic ungulates with stable isotopes
topic_facet energy exchange
arctic ungulates
Animal culture
SF1-1100
description When natural diets meet an animal's requirement for energy, other essential nutrients will usually be supplied in amounts at least sufficient for survival. Knowledge of the energy requirements of free ranging species under typical conditions are important in assessing both their nutritional needs and their ecological impact. The doubly labelled water (DLW) method is currently the most promising objective field methodology for estimating free living energy expenditure but expenditure is only equal to the energy requirement when an animal is in energy balance. Reproduction and seasonal cycles of fat deposition and utilization represent significant components of the energy budget of arctic ungulates but the information gained in the course of a typical DLW study may be used to estimate processes such as milk output and fat storage and mobilization in order to predict requirements from expenditure. The DLW method has been exhaustively validated under highly controlled conditions and the introduction of innovations such as faecal sampling for the estimation of body water isotopic enrichment, the availability of appropriate correction factors and stoichiometrics for known sources of error, and iterative calculation of unknown parameters, have produced a methodology suitable for use in truly free ranging species. The few studies carried out so far in arctic ungulates indicate that previous predictions have generally underestimated the true level of expenditure, that there is considerable between animal variation in the level of expenditure and that this is largely determined by physical activity. The disadvantages of the DLW methodology are that it remains expensive and the isotope analysis is technically demanding. Furthermore, although DLW can provide an accurate value for free living energy expenditure, it is often important to have information on the individual components of expenditure, for example the relative contribution of physical activity and thermoregulatory thermogenesis, in order to interpret the values ...
format Article in Journal/Newspaper
author Paul Haggarty
author_facet Paul Haggarty
author_sort Paul Haggarty
title Quantifying the free living energy exchanges of Arctic ungulates with stable isotopes
title_short Quantifying the free living energy exchanges of Arctic ungulates with stable isotopes
title_full Quantifying the free living energy exchanges of Arctic ungulates with stable isotopes
title_fullStr Quantifying the free living energy exchanges of Arctic ungulates with stable isotopes
title_full_unstemmed Quantifying the free living energy exchanges of Arctic ungulates with stable isotopes
title_sort quantifying the free living energy exchanges of arctic ungulates with stable isotopes
publisher Septentrio Academic Publishing
publishDate 2000
url https://doi.org/10.7557/2.20.2-3.1480
https://doaj.org/article/c222d37350794823b63b0fdc74b0b0d2
geographic Arctic
geographic_facet Arctic
genre Arctic
Rangifer
genre_facet Arctic
Rangifer
op_source Rangifer, Vol 20, Iss 2-3 (2000)
op_relation https://septentrio.uit.no/index.php/rangifer/article/view/1480
https://doaj.org/toc/1890-6729
doi:10.7557/2.20.2-3.1480
1890-6729
https://doaj.org/article/c222d37350794823b63b0fdc74b0b0d2
op_doi https://doi.org/10.7557/2.20.2-3.1480
container_title Rangifer
container_volume 20
container_issue 2-3
container_start_page 59
_version_ 1766324615317028864