Is there a climatic control on Icelandic volcanism?
The evidence for periods of increased volcanic activity following deglaciation, such as following ice sheet retreat after the Last Glacial Maximum, has been examined in several formerly glaciated areas, including Iceland, Alaska, and the Andean Southern Volcanic Zone. Here we present new evidence su...
Published in: | Quaternary Science Advances |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Elsevier
2020
|
Subjects: | |
Online Access: | https://doi.org/10.1016/j.qsa.2020.100004 https://doaj.org/article/c22254c594a2457886ea97d3e195eb0e |
Summary: | The evidence for periods of increased volcanic activity following deglaciation, such as following ice sheet retreat after the Last Glacial Maximum, has been examined in several formerly glaciated areas, including Iceland, Alaska, and the Andean Southern Volcanic Zone. Here we present new evidence supporting the theory that during episodes of cooling in the Holocene, Icelandic volcanic activity decreased. By examining proximal and distal tephra records from Iceland spanning the last 12,500 years, we link two observed tephra minima to documented periods of climatic cooling and glacial advance, at 8.3 to 8 and 5.2 to 4.9 cal kyr BP. We simulate these periods in atmosphere-ocean and ice sheet models to assess the potential validity of the postglacial ‘unloading effect’ on Icelandic volcanic systems. We conclude that an increase in glacial cover may have decreased shallow magma ascent rates, thus limiting eruption potential and producing apparent quiescent periods in proximal and distal tephra records. However, several major uncertainties remain regarding the theory, including geographical and temporal preservation biases and the importance of any unloading effects against other factors, and these will require more prolonged investigation in future research. |
---|