Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf

The Ross Ice Shelf (RIS) is host to a broadband, multimode seismic wavefield that is excited in response to atmospheric, oceanic and solid Earth source processes. A 34-station broadband seismographic network installed on the RIS from late 2014 through early 2017 produced continuous vibrational obser...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Michael G. Baker, Richard C. Aster, Robert E. Anthony, Julien Chaput, Douglas A. Wiens, Andrew Nyblade, Peter D. Bromirski, Peter Gerstoft, Ralph A. Stephen
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press 2019
Subjects:
Online Access:https://doi.org/10.1017/jog.2019.64
https://doaj.org/article/c19e068fd6c146ebb36f9fff0dfd8585
Description
Summary:The Ross Ice Shelf (RIS) is host to a broadband, multimode seismic wavefield that is excited in response to atmospheric, oceanic and solid Earth source processes. A 34-station broadband seismographic network installed on the RIS from late 2014 through early 2017 produced continuous vibrational observations of Earth's largest ice shelf at both floating and grounded locations. We characterize temporal and spatial variations in broadband ambient wavefield power, with a focus on period bands associated with primary (10–20 s) and secondary (5–10 s) microseism signals, and an oceanic source process near the ice front (0.4–4.0 s). Horizontal component signals on floating stations overwhelmingly reflect oceanic excitations year-round due to near-complete isolation from solid Earth shear waves. The spectrum at all periods is shown to be strongly modulated by the concentration of sea ice near the ice shelf front. Contiguous and extensive sea ice damps ocean wave coupling sufficiently so that wintertime background levels can approach or surpass those of land-sited stations in Antarctica.