Impacts of Observed Extreme Antarctic Sea Ice Conditions on the Southern Hemisphere Atmosphere
The Antarctic sea ice has undergone dramatic changes in recent years, with the highest recorded sea ice extent in 2014 and the lowest in 2017. We investigated the impacts of the observed changes in these two extremes of Antarctic sea ice conditions on the atmospheric circulation in the Southern Hemi...
Published in: | Atmosphere |
---|---|
Main Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
MDPI AG
2022
|
Subjects: | |
Online Access: | https://doi.org/10.3390/atmos14010036 https://doaj.org/article/c0df2e82d77b492fbfdd99104bd83cc3 |
Summary: | The Antarctic sea ice has undergone dramatic changes in recent years, with the highest recorded sea ice extent in 2014 and the lowest in 2017. We investigated the impacts of the observed changes in these two extremes of Antarctic sea ice conditions on the atmospheric circulation in the Southern Hemisphere. We conducted three numerical simulations with different seasonal cycles of Antarctic sea ice forcings using the Community Atmosphere Model Version 5: the maximum sea ice extent in 2014 (ICE_14), the minimum sea ice extent in 2017 (ICE_17), and the average sea ice extent between 1981 and 2010 (ICE_clm, reference simulation). Our results suggest that the atmospheric response in the Southern Hemisphere showed strong seasonal variations and the atmospheric circulation in winter was more sensitive to the decreased Antarctic sea ice in 2017 than the increased sea ice in 2014. In ICE_14, the westerlies over the polar region were enhanced in summer, but there was no significant change in the zonal-averaged wind in winter. In contrast, in ICE_17, there was a clear equatorward shift in the subtropical jet in winter, but no significant change in summer. The temperature responses were limited to the Antarctic coast, where there were changes in the sea ice in ICE_14 and ICE_17. The warming on the coast of the Amundsen Sea in summer led to a slight increase in precipitation in both simulations. |
---|