Observational evidence of energetic particle precipitation NO x (EPP-NO x ) interaction with chlorine curbing Antarctic ozone loss
We investigate the impact of the so-called energetic particle precipitation (EPP) indirect effect on lower stratospheric ozone, ClO , and ClONO 2 in the Antarctic springtime. We use observations from the Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) on Aura, the Atmospheric Chem...
Published in: | Atmospheric Chemistry and Physics |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2021
|
Subjects: | |
Online Access: | https://doi.org/10.5194/acp-21-2819-2021 https://doaj.org/article/be0564063907439a9ca65b9bebfd0612 |
_version_ | 1821705525174206464 |
---|---|
author | E. M. Gordon A. Seppälä B. Funke J. Tamminen K. A. Walker |
author_facet | E. M. Gordon A. Seppälä B. Funke J. Tamminen K. A. Walker |
author_sort | E. M. Gordon |
collection | Directory of Open Access Journals: DOAJ Articles |
container_issue | 4 |
container_start_page | 2819 |
container_title | Atmospheric Chemistry and Physics |
container_volume | 21 |
description | We investigate the impact of the so-called energetic particle precipitation (EPP) indirect effect on lower stratospheric ozone, ClO , and ClONO 2 in the Antarctic springtime. We use observations from the Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) on Aura, the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) on SCISAT, and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat, covering the period from 2005 to 2017. Using the geomagnetic activity index Ap as a proxy for EPP, we find consistent ozone increases with elevated EPP during years with an easterly phase of the quasi-biennial oscillation (QBO) in both OMI and MLS observations. While these increases are the opposite of what has previously been reported at higher altitudes, the pattern in the MLS O 3 follows the typical descent patterns of EPP- NO x . The ozone enhancements are also present in the OMI total O 3 column observations. Analogous to the descent patterns found in O 3 , we also found consistent decreases in springtime MLS ClO following winters with elevated EPP. To verify if this is due to a previously proposed mechanism involving the conversion of ClO to the reservoir species ClONO 2 in reaction with NO 2 , we used ClONO 2 observations from ACE-FTS and MIPAS. As ClO and NO 2 are both catalysts in ozone destruction, the conversion to ClONO 2 would result in an ozone increase. We find a positive correlation between EPP and ClONO 2 in the upper stratosphere in the early spring and in the lower stratosphere in late spring, providing the first observational evidence supporting the previously proposed mechanism relating to EPP- NO x modulating Cl x -driven ozone loss. Our findings suggest that EPP has played an important role in modulating ozone depletion in the last 15 years. As chlorine loading in the polar stratosphere continues to decrease in the future, this buffering mechanism will become less effective, and catalytic ozone destruction by EPP- NO x will likely become a ... |
format | Article in Journal/Newspaper |
genre | Antarc* Antarctic |
genre_facet | Antarc* Antarctic |
geographic | Antarctic The Antarctic |
geographic_facet | Antarctic The Antarctic |
id | ftdoajarticles:oai:doaj.org/article:be0564063907439a9ca65b9bebfd0612 |
institution | Open Polar |
language | English |
op_collection_id | ftdoajarticles |
op_container_end_page | 2836 |
op_doi | https://doi.org/10.5194/acp-21-2819-2021 |
op_relation | https://acp.copernicus.org/articles/21/2819/2021/acp-21-2819-2021.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 doi:10.5194/acp-21-2819-2021 1680-7316 1680-7324 https://doaj.org/article/be0564063907439a9ca65b9bebfd0612 |
op_source | Atmospheric Chemistry and Physics, Vol 21, Pp 2819-2836 (2021) |
publishDate | 2021 |
publisher | Copernicus Publications |
record_format | openpolar |
spelling | ftdoajarticles:oai:doaj.org/article:be0564063907439a9ca65b9bebfd0612 2025-01-16T19:16:14+00:00 Observational evidence of energetic particle precipitation NO x (EPP-NO x ) interaction with chlorine curbing Antarctic ozone loss E. M. Gordon A. Seppälä B. Funke J. Tamminen K. A. Walker 2021-02-01T00:00:00Z https://doi.org/10.5194/acp-21-2819-2021 https://doaj.org/article/be0564063907439a9ca65b9bebfd0612 EN eng Copernicus Publications https://acp.copernicus.org/articles/21/2819/2021/acp-21-2819-2021.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 doi:10.5194/acp-21-2819-2021 1680-7316 1680-7324 https://doaj.org/article/be0564063907439a9ca65b9bebfd0612 Atmospheric Chemistry and Physics, Vol 21, Pp 2819-2836 (2021) Physics QC1-999 Chemistry QD1-999 article 2021 ftdoajarticles https://doi.org/10.5194/acp-21-2819-2021 2022-12-31T13:32:44Z We investigate the impact of the so-called energetic particle precipitation (EPP) indirect effect on lower stratospheric ozone, ClO , and ClONO 2 in the Antarctic springtime. We use observations from the Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) on Aura, the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) on SCISAT, and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat, covering the period from 2005 to 2017. Using the geomagnetic activity index Ap as a proxy for EPP, we find consistent ozone increases with elevated EPP during years with an easterly phase of the quasi-biennial oscillation (QBO) in both OMI and MLS observations. While these increases are the opposite of what has previously been reported at higher altitudes, the pattern in the MLS O 3 follows the typical descent patterns of EPP- NO x . The ozone enhancements are also present in the OMI total O 3 column observations. Analogous to the descent patterns found in O 3 , we also found consistent decreases in springtime MLS ClO following winters with elevated EPP. To verify if this is due to a previously proposed mechanism involving the conversion of ClO to the reservoir species ClONO 2 in reaction with NO 2 , we used ClONO 2 observations from ACE-FTS and MIPAS. As ClO and NO 2 are both catalysts in ozone destruction, the conversion to ClONO 2 would result in an ozone increase. We find a positive correlation between EPP and ClONO 2 in the upper stratosphere in the early spring and in the lower stratosphere in late spring, providing the first observational evidence supporting the previously proposed mechanism relating to EPP- NO x modulating Cl x -driven ozone loss. Our findings suggest that EPP has played an important role in modulating ozone depletion in the last 15 years. As chlorine loading in the polar stratosphere continues to decrease in the future, this buffering mechanism will become less effective, and catalytic ozone destruction by EPP- NO x will likely become a ... Article in Journal/Newspaper Antarc* Antarctic Directory of Open Access Journals: DOAJ Articles Antarctic The Antarctic Atmospheric Chemistry and Physics 21 4 2819 2836 |
spellingShingle | Physics QC1-999 Chemistry QD1-999 E. M. Gordon A. Seppälä B. Funke J. Tamminen K. A. Walker Observational evidence of energetic particle precipitation NO x (EPP-NO x ) interaction with chlorine curbing Antarctic ozone loss |
title | Observational evidence of energetic particle precipitation NO x (EPP-NO x ) interaction with chlorine curbing Antarctic ozone loss |
title_full | Observational evidence of energetic particle precipitation NO x (EPP-NO x ) interaction with chlorine curbing Antarctic ozone loss |
title_fullStr | Observational evidence of energetic particle precipitation NO x (EPP-NO x ) interaction with chlorine curbing Antarctic ozone loss |
title_full_unstemmed | Observational evidence of energetic particle precipitation NO x (EPP-NO x ) interaction with chlorine curbing Antarctic ozone loss |
title_short | Observational evidence of energetic particle precipitation NO x (EPP-NO x ) interaction with chlorine curbing Antarctic ozone loss |
title_sort | observational evidence of energetic particle precipitation no x (epp-no x ) interaction with chlorine curbing antarctic ozone loss |
topic | Physics QC1-999 Chemistry QD1-999 |
topic_facet | Physics QC1-999 Chemistry QD1-999 |
url | https://doi.org/10.5194/acp-21-2819-2021 https://doaj.org/article/be0564063907439a9ca65b9bebfd0612 |