Impact of flavivirus vaccine-induced immunity on primary Zika virus antibody response in humans.

Background Zika virus has recently spread to South- and Central America, causing congenital birth defects and neurological complications. Many people at risk are flavivirus pre-immune due to prior infections with other flaviviruses (e.g. dengue virus) or flavivirus vaccinations. Since pre-existing c...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Stefan Malafa, Iris Medits, Judith H Aberle, Stephan W Aberle, Denise Haslwanter, Georgios Tsouchnikas, Silke Wölfel, Kristina L Huber, Elena Percivalle, Pascal Cherpillod, Melissa Thaler, Lena Roßbacher, Michael Kundi, Franz X Heinz, Karin Stiasny
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2020
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0008034
https://doaj.org/article/bbf59a1e7b4047f08c1dfe73e89850ce
Description
Summary:Background Zika virus has recently spread to South- and Central America, causing congenital birth defects and neurological complications. Many people at risk are flavivirus pre-immune due to prior infections with other flaviviruses (e.g. dengue virus) or flavivirus vaccinations. Since pre-existing cross-reactive immunity can potentially modulate antibody responses to Zika virus infection and may affect the outcome of disease, we analyzed fine-specificity as well as virus-neutralizing and infection-enhancing activities of antibodies induced by a primary Zika virus infection in flavivirus-naïve as well as yellow fever- and/or tick-borne encephalitis-vaccinated individuals. Methodology Antibodies in sera from convalescent Zika patients with and without vaccine-induced immunity were assessed by ELISA with respect to Zika virus-specificity and flavivirus cross-reactivity. Functional analyses included virus neutralization and infection-enhancement. The contribution of IgM and cross-reactive antibodies to these properties was determined by depletion experiments. Principal findings Pre-existing flavivirus immunity had a strong influence on the antibody response in primary Zika virus infections, resulting in higher titers of broadly flavivirus cross-reactive antibodies and slightly lower levels of Zika virus-specific IgM. Antibody-dependent enhancement (ADE) of Zika virus was mediated by sub-neutralizing concentrations of specific IgG but not by cross-reactive antibodies. This effect was potently counteracted by the presence of neutralizing IgM. Broadly cross-reactive antibodies were able to both neutralize and enhance infection of dengue virus but not Zika virus, indicating a different exposure of conserved sequence elements in the two viruses. Conclusions Our data point to an important role of flavivirus-specific IgM during the transient early stages of infection, by contributing substantially to neutralization and by counteracting ADE. In addition, our results highlight structural differences between strains of Zika ...