Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequ...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2014
Subjects:
Online Access:https://doi.org/10.5194/bg-11-3547-2014
https://doaj.org/article/b9c96a06f6cd414f8b1b02734e0ce259
id ftdoajarticles:oai:doaj.org/article:b9c96a06f6cd414f8b1b02734e0ce259
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:b9c96a06f6cd414f8b1b02734e0ce259 2023-05-15T15:15:24+02:00 Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system P. Ciais A. J. Dolman A. Bombelli R. Duren A. Peregon P. J. Rayner C. Miller N. Gobron G. Kinderman G. Marland N. Gruber F. Chevallier R. J. Andres G. Balsamo L. Bopp F.-M. Bréon G. Broquet R. Dargaville T. J. Battin A. Borges H. Bovensmann M. Buchwitz J. Butler J. G. Canadell R. B. Cook R. DeFries R. Engelen K. R. Gurney C. Heinze M. Heimann A. Held M. Henry B. Law S. Luyssaert J. Miller T. Moriyama C. Moulin R. B. Myneni C. Nussli M. Obersteiner D. Ojima Y. Pan J.-D. Paris S. L. Piao B. Poulter S. Plummer S. Quegan P. Raymond M. Reichstein L. Rivier 2014-07-01T00:00:00Z https://doi.org/10.5194/bg-11-3547-2014 https://doaj.org/article/b9c96a06f6cd414f8b1b02734e0ce259 EN eng Copernicus Publications http://www.biogeosciences.net/11/3547/2014/bg-11-3547-2014.pdf https://doaj.org/toc/1726-4170 https://doaj.org/toc/1726-4189 1726-4170 1726-4189 doi:10.5194/bg-11-3547-2014 https://doaj.org/article/b9c96a06f6cd414f8b1b02734e0ce259 Biogeosciences, Vol 11, Iss 13, Pp 3547-3602 (2014) Ecology QH540-549.5 Life QH501-531 Geology QE1-996.5 article 2014 ftdoajarticles https://doi.org/10.5194/bg-11-3547-2014 2022-12-31T03:30:25Z A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO 2 and CH 4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for ... Article in Journal/Newspaper Arctic Directory of Open Access Journals: DOAJ Articles Arctic Biogeosciences 11 13 3547 3602
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Ecology
QH540-549.5
Life
QH501-531
Geology
QE1-996.5
spellingShingle Ecology
QH540-549.5
Life
QH501-531
Geology
QE1-996.5
P. Ciais
A. J. Dolman
A. Bombelli
R. Duren
A. Peregon
P. J. Rayner
C. Miller
N. Gobron
G. Kinderman
G. Marland
N. Gruber
F. Chevallier
R. J. Andres
G. Balsamo
L. Bopp
F.-M. Bréon
G. Broquet
R. Dargaville
T. J. Battin
A. Borges
H. Bovensmann
M. Buchwitz
J. Butler
J. G. Canadell
R. B. Cook
R. DeFries
R. Engelen
K. R. Gurney
C. Heinze
M. Heimann
A. Held
M. Henry
B. Law
S. Luyssaert
J. Miller
T. Moriyama
C. Moulin
R. B. Myneni
C. Nussli
M. Obersteiner
D. Ojima
Y. Pan
J.-D. Paris
S. L. Piao
B. Poulter
S. Plummer
S. Quegan
P. Raymond
M. Reichstein
L. Rivier
Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
topic_facet Ecology
QH540-549.5
Life
QH501-531
Geology
QE1-996.5
description A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO 2 and CH 4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for ...
format Article in Journal/Newspaper
author P. Ciais
A. J. Dolman
A. Bombelli
R. Duren
A. Peregon
P. J. Rayner
C. Miller
N. Gobron
G. Kinderman
G. Marland
N. Gruber
F. Chevallier
R. J. Andres
G. Balsamo
L. Bopp
F.-M. Bréon
G. Broquet
R. Dargaville
T. J. Battin
A. Borges
H. Bovensmann
M. Buchwitz
J. Butler
J. G. Canadell
R. B. Cook
R. DeFries
R. Engelen
K. R. Gurney
C. Heinze
M. Heimann
A. Held
M. Henry
B. Law
S. Luyssaert
J. Miller
T. Moriyama
C. Moulin
R. B. Myneni
C. Nussli
M. Obersteiner
D. Ojima
Y. Pan
J.-D. Paris
S. L. Piao
B. Poulter
S. Plummer
S. Quegan
P. Raymond
M. Reichstein
L. Rivier
author_facet P. Ciais
A. J. Dolman
A. Bombelli
R. Duren
A. Peregon
P. J. Rayner
C. Miller
N. Gobron
G. Kinderman
G. Marland
N. Gruber
F. Chevallier
R. J. Andres
G. Balsamo
L. Bopp
F.-M. Bréon
G. Broquet
R. Dargaville
T. J. Battin
A. Borges
H. Bovensmann
M. Buchwitz
J. Butler
J. G. Canadell
R. B. Cook
R. DeFries
R. Engelen
K. R. Gurney
C. Heinze
M. Heimann
A. Held
M. Henry
B. Law
S. Luyssaert
J. Miller
T. Moriyama
C. Moulin
R. B. Myneni
C. Nussli
M. Obersteiner
D. Ojima
Y. Pan
J.-D. Paris
S. L. Piao
B. Poulter
S. Plummer
S. Quegan
P. Raymond
M. Reichstein
L. Rivier
author_sort P. Ciais
title Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_short Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_full Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_fullStr Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_full_unstemmed Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_sort current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
publisher Copernicus Publications
publishDate 2014
url https://doi.org/10.5194/bg-11-3547-2014
https://doaj.org/article/b9c96a06f6cd414f8b1b02734e0ce259
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_source Biogeosciences, Vol 11, Iss 13, Pp 3547-3602 (2014)
op_relation http://www.biogeosciences.net/11/3547/2014/bg-11-3547-2014.pdf
https://doaj.org/toc/1726-4170
https://doaj.org/toc/1726-4189
1726-4170
1726-4189
doi:10.5194/bg-11-3547-2014
https://doaj.org/article/b9c96a06f6cd414f8b1b02734e0ce259
op_doi https://doi.org/10.5194/bg-11-3547-2014
container_title Biogeosciences
container_volume 11
container_issue 13
container_start_page 3547
op_container_end_page 3602
_version_ 1766345764477337600