The Phenotypic and the Genetic Response to the Extreme High Temperature Provides New Insight Into Thermal Tolerance for the Pacific Oyster Crassostrea gigas
Investigating responses of organisms to stressful or new environments with selection pressure is one of the crucial problems in evolutionary biology, and it is of importance to understand the phenotypic and molecular mechanism underlying thermal tolerance under the context of the climate change. The...
Published in: | Frontiers in Marine Science |
---|---|
Main Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Frontiers Media S.A.
2020
|
Subjects: | |
Online Access: | https://doi.org/10.3389/fmars.2020.00399 https://doaj.org/article/b89d06c994e148229ce5cf5ea97a9ff0 |
id |
ftdoajarticles:oai:doaj.org/article:b89d06c994e148229ce5cf5ea97a9ff0 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:b89d06c994e148229ce5cf5ea97a9ff0 2023-05-15T15:58:28+02:00 The Phenotypic and the Genetic Response to the Extreme High Temperature Provides New Insight Into Thermal Tolerance for the Pacific Oyster Crassostrea gigas Fangfang Ding Ao Li Rihao Cong Xinxing Wang Wei Wang Huayong Que Guofan Zhang Li Li 2020-06-01T00:00:00Z https://doi.org/10.3389/fmars.2020.00399 https://doaj.org/article/b89d06c994e148229ce5cf5ea97a9ff0 EN eng Frontiers Media S.A. https://www.frontiersin.org/article/10.3389/fmars.2020.00399/full https://doaj.org/toc/2296-7745 2296-7745 doi:10.3389/fmars.2020.00399 https://doaj.org/article/b89d06c994e148229ce5cf5ea97a9ff0 Frontiers in Marine Science, Vol 7 (2020) Pacific oyster artificial selection thermotolerance genetic structure physiological traits Science Q General. Including nature conservation geographical distribution QH1-199.5 article 2020 ftdoajarticles https://doi.org/10.3389/fmars.2020.00399 2022-12-31T02:38:22Z Investigating responses of organisms to stressful or new environments with selection pressure is one of the crucial problems in evolutionary biology, and it is of importance to understand the phenotypic and molecular mechanism underlying thermal tolerance under the context of the climate change. The Pacific oyster, Crassostrea gigas, inhabiting the environment with high variation in temperature, is a worldwide aquaculture species. However, summer mortality relevant to the high temperature is one of the problems challenging the oyster industry. An artificial selective breeding program was initiated to select for the thermal tolerance of oysters in an attempt to increase the summer survival rates since 2017 in our study. Parents of thermotolerance oyster selection is are based on acute thermal tolerance under controlled heat stress to strengthen the selection intensity. Furthermore, the phenotypic and the genotypic response to extreme high temperature were investigated based on the comparison of the F1 progeny of the selected and natural populations in growth, physiology, mortality rate post heat stress, genetic structure, and gene expression. The parameter of growth showed no significant change between the selected and natural populations for the 6-month-old oysters. The selected population exhibited a higher survival rate after exposure to heat stress in the laboratory, which is in line with result of the filed experience that summer mortality of selected population was significantly lower than that of natural population. Further, the respiration rate of the selected population increased at 38°C, while it increased at 35°C in the natural population. Simultaneously, metabolism-related enzymes (PK, SOD) showed higher activity levels in the selected population. Furthermore, phylogenetic analysis, population structure, and principal component analysis (PCA) suggested that the selected and natural populations exhibited genetic divergence, with eight genes (IF4A2, IF6, EIF3A, MANBA, DDX43, RECS, CAT2, and BAG4) in the ... Article in Journal/Newspaper Crassostrea gigas Pacific oyster Directory of Open Access Journals: DOAJ Articles Pacific Frontiers in Marine Science 7 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Pacific oyster artificial selection thermotolerance genetic structure physiological traits Science Q General. Including nature conservation geographical distribution QH1-199.5 |
spellingShingle |
Pacific oyster artificial selection thermotolerance genetic structure physiological traits Science Q General. Including nature conservation geographical distribution QH1-199.5 Fangfang Ding Ao Li Rihao Cong Xinxing Wang Wei Wang Huayong Que Guofan Zhang Li Li The Phenotypic and the Genetic Response to the Extreme High Temperature Provides New Insight Into Thermal Tolerance for the Pacific Oyster Crassostrea gigas |
topic_facet |
Pacific oyster artificial selection thermotolerance genetic structure physiological traits Science Q General. Including nature conservation geographical distribution QH1-199.5 |
description |
Investigating responses of organisms to stressful or new environments with selection pressure is one of the crucial problems in evolutionary biology, and it is of importance to understand the phenotypic and molecular mechanism underlying thermal tolerance under the context of the climate change. The Pacific oyster, Crassostrea gigas, inhabiting the environment with high variation in temperature, is a worldwide aquaculture species. However, summer mortality relevant to the high temperature is one of the problems challenging the oyster industry. An artificial selective breeding program was initiated to select for the thermal tolerance of oysters in an attempt to increase the summer survival rates since 2017 in our study. Parents of thermotolerance oyster selection is are based on acute thermal tolerance under controlled heat stress to strengthen the selection intensity. Furthermore, the phenotypic and the genotypic response to extreme high temperature were investigated based on the comparison of the F1 progeny of the selected and natural populations in growth, physiology, mortality rate post heat stress, genetic structure, and gene expression. The parameter of growth showed no significant change between the selected and natural populations for the 6-month-old oysters. The selected population exhibited a higher survival rate after exposure to heat stress in the laboratory, which is in line with result of the filed experience that summer mortality of selected population was significantly lower than that of natural population. Further, the respiration rate of the selected population increased at 38°C, while it increased at 35°C in the natural population. Simultaneously, metabolism-related enzymes (PK, SOD) showed higher activity levels in the selected population. Furthermore, phylogenetic analysis, population structure, and principal component analysis (PCA) suggested that the selected and natural populations exhibited genetic divergence, with eight genes (IF4A2, IF6, EIF3A, MANBA, DDX43, RECS, CAT2, and BAG4) in the ... |
format |
Article in Journal/Newspaper |
author |
Fangfang Ding Ao Li Rihao Cong Xinxing Wang Wei Wang Huayong Que Guofan Zhang Li Li |
author_facet |
Fangfang Ding Ao Li Rihao Cong Xinxing Wang Wei Wang Huayong Que Guofan Zhang Li Li |
author_sort |
Fangfang Ding |
title |
The Phenotypic and the Genetic Response to the Extreme High Temperature Provides New Insight Into Thermal Tolerance for the Pacific Oyster Crassostrea gigas |
title_short |
The Phenotypic and the Genetic Response to the Extreme High Temperature Provides New Insight Into Thermal Tolerance for the Pacific Oyster Crassostrea gigas |
title_full |
The Phenotypic and the Genetic Response to the Extreme High Temperature Provides New Insight Into Thermal Tolerance for the Pacific Oyster Crassostrea gigas |
title_fullStr |
The Phenotypic and the Genetic Response to the Extreme High Temperature Provides New Insight Into Thermal Tolerance for the Pacific Oyster Crassostrea gigas |
title_full_unstemmed |
The Phenotypic and the Genetic Response to the Extreme High Temperature Provides New Insight Into Thermal Tolerance for the Pacific Oyster Crassostrea gigas |
title_sort |
phenotypic and the genetic response to the extreme high temperature provides new insight into thermal tolerance for the pacific oyster crassostrea gigas |
publisher |
Frontiers Media S.A. |
publishDate |
2020 |
url |
https://doi.org/10.3389/fmars.2020.00399 https://doaj.org/article/b89d06c994e148229ce5cf5ea97a9ff0 |
geographic |
Pacific |
geographic_facet |
Pacific |
genre |
Crassostrea gigas Pacific oyster |
genre_facet |
Crassostrea gigas Pacific oyster |
op_source |
Frontiers in Marine Science, Vol 7 (2020) |
op_relation |
https://www.frontiersin.org/article/10.3389/fmars.2020.00399/full https://doaj.org/toc/2296-7745 2296-7745 doi:10.3389/fmars.2020.00399 https://doaj.org/article/b89d06c994e148229ce5cf5ea97a9ff0 |
op_doi |
https://doi.org/10.3389/fmars.2020.00399 |
container_title |
Frontiers in Marine Science |
container_volume |
7 |
_version_ |
1766394224187539456 |