First tomographic observations of gravity waves by the infrared limb imager GLORIA

Atmospheric gravity waves are a major cause of uncertainty in atmosphere general circulation models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in general circulation models is therefore of primary interest. I...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: I. Krisch, P. Preusse, J. Ungermann, A. Dörnbrack, S. D. Eckermann, M. Ern, F. Friedl-Vallon, M. Kaufmann, H. Oelhaf, M. Rapp, C. Strube, M. Riese
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2017
Subjects:
Online Access:https://doi.org/10.5194/acp-17-14937-2017
https://doaj.org/article/b7942af8cf87491ca739b407fd59553d
id ftdoajarticles:oai:doaj.org/article:b7942af8cf87491ca739b407fd59553d
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:b7942af8cf87491ca739b407fd59553d 2023-05-15T16:47:33+02:00 First tomographic observations of gravity waves by the infrared limb imager GLORIA I. Krisch P. Preusse J. Ungermann A. Dörnbrack S. D. Eckermann M. Ern F. Friedl-Vallon M. Kaufmann H. Oelhaf M. Rapp C. Strube M. Riese 2017-12-01T00:00:00Z https://doi.org/10.5194/acp-17-14937-2017 https://doaj.org/article/b7942af8cf87491ca739b407fd59553d EN eng Copernicus Publications https://www.atmos-chem-phys.net/17/14937/2017/acp-17-14937-2017.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 doi:10.5194/acp-17-14937-2017 1680-7316 1680-7324 https://doaj.org/article/b7942af8cf87491ca739b407fd59553d Atmospheric Chemistry and Physics, Vol 17, Pp 14937-14953 (2017) Physics QC1-999 Chemistry QD1-999 article 2017 ftdoajarticles https://doi.org/10.5194/acp-17-14937-2017 2022-12-31T12:29:10Z Atmospheric gravity waves are a major cause of uncertainty in atmosphere general circulation models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in general circulation models is therefore of primary interest. In this regard, measurements providing an accurate 3-D characterization of gravity waves are needed. Using the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), the first airborne implementation of a novel infrared limb imaging technique, a gravity wave event over Iceland was observed. An air volume disturbed by this gravity wave was investigated from different angles by encircling the volume with a closed flight pattern. Using a tomographic retrieval approach, the measurements of this air mass at different angles allowed for a 3-D reconstruction of the temperature and trace gas structure. The temperature measurements were used to derive gravity wave amplitudes, 3-D wave vectors, and direction-resolved momentum fluxes. These parameters facilitated the backtracing of the waves to their sources on the southern coast of Iceland. Two wave packets are distinguished, one stemming from the main mountain ridge in the south of Iceland and the other from the smaller mountains in the north. The total area-integrated fluxes of these two wave packets are determined. Forward ray tracing reveals that the waves propagate laterally more than 2000 km away from their source region. A comparison of a 3-D ray-tracing version to solely column-based propagation showed that lateral propagation can help the waves to avoid critical layers and propagate to higher altitudes. Thus, the implementation of oblique gravity wave propagation into general circulation models may improve their predictive skills. Article in Journal/Newspaper Iceland Directory of Open Access Journals: DOAJ Articles Atmospheric Chemistry and Physics 17 24 14937 14953
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Physics
QC1-999
Chemistry
QD1-999
spellingShingle Physics
QC1-999
Chemistry
QD1-999
I. Krisch
P. Preusse
J. Ungermann
A. Dörnbrack
S. D. Eckermann
M. Ern
F. Friedl-Vallon
M. Kaufmann
H. Oelhaf
M. Rapp
C. Strube
M. Riese
First tomographic observations of gravity waves by the infrared limb imager GLORIA
topic_facet Physics
QC1-999
Chemistry
QD1-999
description Atmospheric gravity waves are a major cause of uncertainty in atmosphere general circulation models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in general circulation models is therefore of primary interest. In this regard, measurements providing an accurate 3-D characterization of gravity waves are needed. Using the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), the first airborne implementation of a novel infrared limb imaging technique, a gravity wave event over Iceland was observed. An air volume disturbed by this gravity wave was investigated from different angles by encircling the volume with a closed flight pattern. Using a tomographic retrieval approach, the measurements of this air mass at different angles allowed for a 3-D reconstruction of the temperature and trace gas structure. The temperature measurements were used to derive gravity wave amplitudes, 3-D wave vectors, and direction-resolved momentum fluxes. These parameters facilitated the backtracing of the waves to their sources on the southern coast of Iceland. Two wave packets are distinguished, one stemming from the main mountain ridge in the south of Iceland and the other from the smaller mountains in the north. The total area-integrated fluxes of these two wave packets are determined. Forward ray tracing reveals that the waves propagate laterally more than 2000 km away from their source region. A comparison of a 3-D ray-tracing version to solely column-based propagation showed that lateral propagation can help the waves to avoid critical layers and propagate to higher altitudes. Thus, the implementation of oblique gravity wave propagation into general circulation models may improve their predictive skills.
format Article in Journal/Newspaper
author I. Krisch
P. Preusse
J. Ungermann
A. Dörnbrack
S. D. Eckermann
M. Ern
F. Friedl-Vallon
M. Kaufmann
H. Oelhaf
M. Rapp
C. Strube
M. Riese
author_facet I. Krisch
P. Preusse
J. Ungermann
A. Dörnbrack
S. D. Eckermann
M. Ern
F. Friedl-Vallon
M. Kaufmann
H. Oelhaf
M. Rapp
C. Strube
M. Riese
author_sort I. Krisch
title First tomographic observations of gravity waves by the infrared limb imager GLORIA
title_short First tomographic observations of gravity waves by the infrared limb imager GLORIA
title_full First tomographic observations of gravity waves by the infrared limb imager GLORIA
title_fullStr First tomographic observations of gravity waves by the infrared limb imager GLORIA
title_full_unstemmed First tomographic observations of gravity waves by the infrared limb imager GLORIA
title_sort first tomographic observations of gravity waves by the infrared limb imager gloria
publisher Copernicus Publications
publishDate 2017
url https://doi.org/10.5194/acp-17-14937-2017
https://doaj.org/article/b7942af8cf87491ca739b407fd59553d
genre Iceland
genre_facet Iceland
op_source Atmospheric Chemistry and Physics, Vol 17, Pp 14937-14953 (2017)
op_relation https://www.atmos-chem-phys.net/17/14937/2017/acp-17-14937-2017.pdf
https://doaj.org/toc/1680-7316
https://doaj.org/toc/1680-7324
doi:10.5194/acp-17-14937-2017
1680-7316
1680-7324
https://doaj.org/article/b7942af8cf87491ca739b407fd59553d
op_doi https://doi.org/10.5194/acp-17-14937-2017
container_title Atmospheric Chemistry and Physics
container_volume 17
container_issue 24
container_start_page 14937
op_container_end_page 14953
_version_ 1766037638322585600