The effects of temperature and pH on the reproductive ecology of sand dollars and sea urchins: Impacts on sperm swimming and fertilization

In an era of climate change, impacts on the marine environment include warming and ocean acidification. These effects can be amplified in shallow coastal regions where conditions often fluctuate widely. This type of environmental variation is potentially important for many nearshore species that are...

Full description

Bibliographic Details
Main Authors: Sara Grace Leuchtenberger, Maris Daleo, Peter Gullickson, Andi Delgado, Carly Lo, Michael T. Nishizaki
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2022
Subjects:
R
Q
Online Access:https://doaj.org/article/b2a4b2968632429ebcf0eaabce7a2cc1
Description
Summary:In an era of climate change, impacts on the marine environment include warming and ocean acidification. These effects can be amplified in shallow coastal regions where conditions often fluctuate widely. This type of environmental variation is potentially important for many nearshore species that are broadcast spawners, releasing eggs and sperm into the water column for fertilization. We conducted two experiments to investigate: 1) the impact of water temperature on sperm swimming characteristics and fertilization rate in sand dollars (Dendraster excentricus; temperatures 8-38°C) and sea urchins (Mesocentrotus franciscanus; temperatures 8-28°C) and; 2) the combined effects of multiple stressors (water temperature and pH) on these traits in sand dollars. We quantify thermal performance curves showing that sand dollar fertilization rates, sperm swimming velocities, and sperm motility display remarkably wide thermal breadths relative to red urchins, perhaps reflecting the wider range of water temperatures experienced by sand dollars at our field sites. For sand dollars, both temperature (8, 16, 24°C) and pH (7.1, 7.5, 7.9) affected fertilization but only temperature influenced sperm swimming velocity and motility. Although sperm velocities and fertilization were positively correlated, our fertilization kinetics model dramatically overestimated measured rates and this discrepancy was most pronounced under extreme temperature and pH conditions. Our results suggest that environmental stressors like temperature and pH likely impair aspects of the reproductive process beyond simple sperm swimming behavior.