Competency of Anopheles stephensi mysorensis strain for Plasmodium vivax and the role of inhibitory carbohydrates to block its sporogonic cycle

Abstract Background Despite the abundance of studies conducted on the role of mosquitoes in malaria transmission, the biology and interaction of Plasmodium with its insect host still holds many mysteries. This paper provides the first study to follow the sporogonic cycle of Plasmodium vivax in a wil...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Whitten Miranda MA, Nateghpour Mehdi, Akbarzadeh Kamran, Doosti Soghra, Basseri Hamid R, Ladoni Hossein
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2008
Subjects:
Online Access:https://doi.org/10.1186/1475-2875-7-131
https://doaj.org/article/ae41c2bfa00345c8ab164676815a8220
Description
Summary:Abstract Background Despite the abundance of studies conducted on the role of mosquitoes in malaria transmission, the biology and interaction of Plasmodium with its insect host still holds many mysteries. This paper provides the first study to follow the sporogonic cycle of Plasmodium vivax in a wild insecticide-resistant mysorensis strain of Anopheles stephensi , a major vector of vivax malaria in south-eastern Iran. The study subsequently demonstrates that host-parasite sugar binding interactions are critical to the development of this parasite in the salivary glands of its mosquito host. The identity of the receptors or sugars involved was revealed by a receptor "pre-saturation" strategy in which sugars fed to the mosquitoes inhibited normal host-parasite interactions. Methods Anopheles stephensi mysorensis mosquitoes were artificially infected with P. vivax by feeding on the blood of gametocytaemic volunteers reporting to local malaria clinics in the Sistan-Baluchistan province of south-eastern Iran. In order to determine the inhibitory effect of carbohydrates on sporogonic development, vector mosquitoes were allowed to ingest blood meals containing both gametocytes and added carbohydrates. The carbohydrates tested were GlcNAc, GalNAc, arabinose, fucose, mannose, lactose, glucose and galactose. Sporogonic development was assessed by survival of the parasite at both the oocyst and sporozoite stages. Results Oocyst development was observed among nearly 6% of the fed control mosquitoes but the overall number of mosquitoes exhibiting sporozoite invasion of the salivary glands was 47.5% lower than the number supporting oocysts in their midgut. Of the tested carbohydrates, only arabinose and fucose slightly perturbed the development of P. vivax oocysts at the basal side of the mosquito midgut, and the remaining sugars caused no reductions in oocyst development. Strikingly however, sporozoites were completely absent from the salivary glands of mosquitoes treated with mannose, GalNAc, and lactose. Conclusion The ...