Wintertime Simulations Induce Changes in the Structure, Diversity and Function of Antarctic Sea Ice-Associated Microbial Communities

Antarctic sea-ice is exposed to a wide range of environmental conditions during its annual existence; however, there is very little information describing the change in sea-ice-associated microbial communities (SIMCOs) during the changing seasons. It is well known that during the solar seasons, SIMC...

Full description

Bibliographic Details
Published in:Microorganisms
Main Authors: Violetta La Cono, Francesco Smedile, Francesca Crisafi, Laura Marturano, Stepan V. Toshchakov, Gina La Spada, Ninh Khắc Bản, Michail M. Yakimov
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2022
Subjects:
Online Access:https://doi.org/10.3390/microorganisms10030623
https://doaj.org/article/ade83f6a0ac34423a9831227a5c70631
id ftdoajarticles:oai:doaj.org/article:ade83f6a0ac34423a9831227a5c70631
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:ade83f6a0ac34423a9831227a5c70631 2023-05-15T13:51:01+02:00 Wintertime Simulations Induce Changes in the Structure, Diversity and Function of Antarctic Sea Ice-Associated Microbial Communities Violetta La Cono Francesco Smedile Francesca Crisafi Laura Marturano Stepan V. Toshchakov Gina La Spada Ninh Khắc Bản Michail M. Yakimov 2022-03-01T00:00:00Z https://doi.org/10.3390/microorganisms10030623 https://doaj.org/article/ade83f6a0ac34423a9831227a5c70631 EN eng MDPI AG https://www.mdpi.com/2076-2607/10/3/623 https://doaj.org/toc/2076-2607 doi:10.3390/microorganisms10030623 2076-2607 https://doaj.org/article/ade83f6a0ac34423a9831227a5c70631 Microorganisms, Vol 10, Iss 623, p 623 (2022) Antarctica sea-ice brine microbial community SIMCO sulfate-reducing bacteria sulfur-oxidizing bacteria Biology (General) QH301-705.5 article 2022 ftdoajarticles https://doi.org/10.3390/microorganisms10030623 2022-12-31T13:41:52Z Antarctic sea-ice is exposed to a wide range of environmental conditions during its annual existence; however, there is very little information describing the change in sea-ice-associated microbial communities (SIMCOs) during the changing seasons. It is well known that during the solar seasons, SIMCOs play an important role in the polar carbon-cycle, by increasing the total photosynthetic primary production of the South Ocean and participating in the remineralization of phosphates and nitrogen. What remains poorly understood is the dynamic of SIMCO populations and their ecological contribution to carbon and nutrient cycling throughout the entire annual life of Antarctic sea-ice, especially in winter. Sea ice at this time of the year is an extreme environment, characterized by complete darkness (which stops photosynthesis), extremely low temperatures in its upper horizons (down to −45 °C) and high salinity (up to 150–250 psu) in its brine inclusions, where SIMCOs thrive. Without a permanent station, wintering expeditions in Antarctica are technically difficult; therefore, in this study, the process of autumn freezing was modelled under laboratory conditions, and the resulting ‘young ice’ was further incubated in cold and darkness for one month. The ice formation experiment was primarily designed to reproduce two critical conditions: (i) total darkness, causing the photosynthesis to cease, and (ii) the presence of a large amount of algae-derived organic matter. As expected, in the absence of photosynthesis, the activity of aerobic heterotrophs quickly created micro-oxic conditions, which caused the emergence of new players, namely facultative anaerobic and anaerobic microorganisms. Following this finding, we can state that Antarctic pack-ice and its surrounding ambient (under-ice seawater and platelet ice) are likely to be very dynamic and can quickly respond to environmental changes caused by the seasonal fluctuations. Given the size of Antarctic pack-ice, even in complete darkness and cessation of ... Article in Journal/Newspaper Antarc* Antarctic Antarctica Sea ice Directory of Open Access Journals: DOAJ Articles Antarctic Microorganisms 10 3 623
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Antarctica
sea-ice brine
microbial community
SIMCO
sulfate-reducing bacteria
sulfur-oxidizing bacteria
Biology (General)
QH301-705.5
spellingShingle Antarctica
sea-ice brine
microbial community
SIMCO
sulfate-reducing bacteria
sulfur-oxidizing bacteria
Biology (General)
QH301-705.5
Violetta La Cono
Francesco Smedile
Francesca Crisafi
Laura Marturano
Stepan V. Toshchakov
Gina La Spada
Ninh Khắc Bản
Michail M. Yakimov
Wintertime Simulations Induce Changes in the Structure, Diversity and Function of Antarctic Sea Ice-Associated Microbial Communities
topic_facet Antarctica
sea-ice brine
microbial community
SIMCO
sulfate-reducing bacteria
sulfur-oxidizing bacteria
Biology (General)
QH301-705.5
description Antarctic sea-ice is exposed to a wide range of environmental conditions during its annual existence; however, there is very little information describing the change in sea-ice-associated microbial communities (SIMCOs) during the changing seasons. It is well known that during the solar seasons, SIMCOs play an important role in the polar carbon-cycle, by increasing the total photosynthetic primary production of the South Ocean and participating in the remineralization of phosphates and nitrogen. What remains poorly understood is the dynamic of SIMCO populations and their ecological contribution to carbon and nutrient cycling throughout the entire annual life of Antarctic sea-ice, especially in winter. Sea ice at this time of the year is an extreme environment, characterized by complete darkness (which stops photosynthesis), extremely low temperatures in its upper horizons (down to −45 °C) and high salinity (up to 150–250 psu) in its brine inclusions, where SIMCOs thrive. Without a permanent station, wintering expeditions in Antarctica are technically difficult; therefore, in this study, the process of autumn freezing was modelled under laboratory conditions, and the resulting ‘young ice’ was further incubated in cold and darkness for one month. The ice formation experiment was primarily designed to reproduce two critical conditions: (i) total darkness, causing the photosynthesis to cease, and (ii) the presence of a large amount of algae-derived organic matter. As expected, in the absence of photosynthesis, the activity of aerobic heterotrophs quickly created micro-oxic conditions, which caused the emergence of new players, namely facultative anaerobic and anaerobic microorganisms. Following this finding, we can state that Antarctic pack-ice and its surrounding ambient (under-ice seawater and platelet ice) are likely to be very dynamic and can quickly respond to environmental changes caused by the seasonal fluctuations. Given the size of Antarctic pack-ice, even in complete darkness and cessation of ...
format Article in Journal/Newspaper
author Violetta La Cono
Francesco Smedile
Francesca Crisafi
Laura Marturano
Stepan V. Toshchakov
Gina La Spada
Ninh Khắc Bản
Michail M. Yakimov
author_facet Violetta La Cono
Francesco Smedile
Francesca Crisafi
Laura Marturano
Stepan V. Toshchakov
Gina La Spada
Ninh Khắc Bản
Michail M. Yakimov
author_sort Violetta La Cono
title Wintertime Simulations Induce Changes in the Structure, Diversity and Function of Antarctic Sea Ice-Associated Microbial Communities
title_short Wintertime Simulations Induce Changes in the Structure, Diversity and Function of Antarctic Sea Ice-Associated Microbial Communities
title_full Wintertime Simulations Induce Changes in the Structure, Diversity and Function of Antarctic Sea Ice-Associated Microbial Communities
title_fullStr Wintertime Simulations Induce Changes in the Structure, Diversity and Function of Antarctic Sea Ice-Associated Microbial Communities
title_full_unstemmed Wintertime Simulations Induce Changes in the Structure, Diversity and Function of Antarctic Sea Ice-Associated Microbial Communities
title_sort wintertime simulations induce changes in the structure, diversity and function of antarctic sea ice-associated microbial communities
publisher MDPI AG
publishDate 2022
url https://doi.org/10.3390/microorganisms10030623
https://doaj.org/article/ade83f6a0ac34423a9831227a5c70631
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
Antarctica
Sea ice
genre_facet Antarc*
Antarctic
Antarctica
Sea ice
op_source Microorganisms, Vol 10, Iss 623, p 623 (2022)
op_relation https://www.mdpi.com/2076-2607/10/3/623
https://doaj.org/toc/2076-2607
doi:10.3390/microorganisms10030623
2076-2607
https://doaj.org/article/ade83f6a0ac34423a9831227a5c70631
op_doi https://doi.org/10.3390/microorganisms10030623
container_title Microorganisms
container_volume 10
container_issue 3
container_start_page 623
_version_ 1766254579595345920