Effect of hyaloclastite breccia boulders on meso-scale periglacial-aeolian landsystem in semi-arid Antarctic environment, James Ross Island, Antarctic Peninsula

In this study we aim to describe the processes leading to the creation of a specific periglacial and aeolian landsystem, which evolves around the hyaloclastite breccia boulders on James Ross Island, north-eastern Antarctic Peninsula. These boulders were deposited as a result of the Late Holocene adv...

Full description

Bibliographic Details
Published in:Cuadernos de Investigación Geográfica
Main Authors: M. Kňažková, F. Hrbáček, J. Kavan, D. Nývlt
Format: Article in Journal/Newspaper
Language:English
Spanish
Published: Universidad de La Rioja 2020
Subjects:
Online Access:https://doi.org/10.18172/cig.3800
https://doaj.org/article/aa6b408490d94851a48c79aac5d0afb7
Description
Summary:In this study we aim to describe the processes leading to the creation of a specific periglacial and aeolian landsystem, which evolves around the hyaloclastite breccia boulders on James Ross Island, north-eastern Antarctic Peninsula. These boulders were deposited as a result of the Late Holocene advance of Whisky Glacier, forming a well-developed boulder train approximately 5-km long, stretching from Whisky Glacier moraine to Brandy Bay. The combination of ground temperature monitoring, snow cover measurements, grain size analysis and field survey were used to quantify and understand the interplay of periglacial and aeolian processes leading to the formation of the specific meso-scale landsystem around the boulders. The ground temperature probes were installed during January 2017 in the vicinity of two selected boulders. The two study sites, at Monolith Lake (large boulder) and Keller Stream (smaller boulder), were also fitted with snow stakes and trail cameras. An automatic weather station (AWS) on the Abernethy Flats, located approximately two kilometres to the north-west, was used as a reference site for ground temperature and snow cover thickness. The hyaloclastite breccia boulders act as obstacles to wind and trap wind-blown snow, resulting in the formation of snow accumulations on their windward and lee sides. These accumulations affect ground thermal regime and lead to the transport of fine particles by meltwater from the snow during the summer season. The snow cover also traps wind-blown fine sand resulting in the formation of fine-grained rims on the windward and lee sides of the boulders after the snow has melted. Furthermore, the meltwater affects ground moisture content, creating favourable, but spatially limited conditions for colonisation by mosses and lichens.