Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling
The warming and subsequent degradation of mountain permafrost within alpine areas represent an important process influencing the stability of steep slopes and rock faces. The unstable and monitored slopes of Mannen (Møre and Romsdal county, southern Norway) and Gámanjunni-3 (Troms and Finnmark count...
Published in: | Earth Surface Dynamics |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2022
|
Subjects: | |
Online Access: | https://doi.org/10.5194/esurf-10-97-2022 https://doaj.org/article/a9e052c18d1a46b7878e9673c31b3c1f |
id |
ftdoajarticles:oai:doaj.org/article:a9e052c18d1a46b7878e9673c31b3c1f |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:a9e052c18d1a46b7878e9673c31b3c1f 2023-05-15T16:13:45+02:00 Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling B. Etzelmüller J. Czekirda F. Magnin P.-A. Duvillard L. Ravanel E. Malet A. Aspaas L. Kristensen I. Skrede G. D. Majala B. Jacobs J. Leinauer C. Hauck C. Hilbich M. Böhme R. Hermanns H. Ø. Eriksen T. R. Lauknes M. Krautblatter S. Westermann 2022-02-01T00:00:00Z https://doi.org/10.5194/esurf-10-97-2022 https://doaj.org/article/a9e052c18d1a46b7878e9673c31b3c1f EN eng Copernicus Publications https://esurf.copernicus.org/articles/10/97/2022/esurf-10-97-2022.pdf https://doaj.org/toc/2196-6311 https://doaj.org/toc/2196-632X doi:10.5194/esurf-10-97-2022 2196-6311 2196-632X https://doaj.org/article/a9e052c18d1a46b7878e9673c31b3c1f Earth Surface Dynamics, Vol 10, Pp 97-129 (2022) Dynamic and structural geology QE500-639.5 article 2022 ftdoajarticles https://doi.org/10.5194/esurf-10-97-2022 2022-12-31T14:11:12Z The warming and subsequent degradation of mountain permafrost within alpine areas represent an important process influencing the stability of steep slopes and rock faces. The unstable and monitored slopes of Mannen (Møre and Romsdal county, southern Norway) and Gámanjunni-3 (Troms and Finnmark county, northern Norway) were classified as high-risk sites by the Norwegian Geological Survey (NGU). Failure initiation has been suggested to be linked to permafrost degradation, but the detailed permafrost distribution at the sites is unknown. Rock wall (RW) temperature loggers at both sites have measured the thermal regime since 2015, showing mean rock surface temperatures between 2.5 and −1.6 ∘ C depending on site and topographic aspect. Between 2016 and 2019 we conducted 2D and 3D electrical resistivity tomography (ERT) surveys on the plateau and directly within the rock wall back scarp of the unstable slopes at both sites. In combination with geophysical laboratory analysis of rock wall samples from both sites, the ERT soundings indicate widespread permafrost areas, especially at Gámanjunni-3. Finally, we conducted 2D thermal modelling to evaluate the potential thermal regime, along with an analysis of available displacement rate measurements based on Global Navigation Satellite System (GNSS) and ground- and satellite-based interferometric synthetic aperture radar (InSAR) methods. Surface air and ground temperatures have increased significantly since ca. 1900 by 1 and 1.5 ∘ C, and the highest temperatures have been measured and modelled since 2000 at both study sites. We observed a seasonality of displacement, with increasing velocities during late winter and early spring and the highest velocities in June, probably related to water pressure variations during snowmelt. The displacement rates of Gámanjunni-3 rockslide co-vary with subsurface resistivity and modelled ground temperature. Increased displacement rates seem to be associated with sub-zero ground temperatures and higher ground resistivity. This might be ... Article in Journal/Newspaper Finnmark Northern Norway permafrost Finnmark Troms Directory of Open Access Journals: DOAJ Articles Norway Mannen ENVELOPE(13.520,13.520,68.204,68.204) Gámanjunni ENVELOPE(20.591,20.591,69.469,69.469) Earth Surface Dynamics 10 1 97 129 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Dynamic and structural geology QE500-639.5 |
spellingShingle |
Dynamic and structural geology QE500-639.5 B. Etzelmüller J. Czekirda F. Magnin P.-A. Duvillard L. Ravanel E. Malet A. Aspaas L. Kristensen I. Skrede G. D. Majala B. Jacobs J. Leinauer C. Hauck C. Hilbich M. Böhme R. Hermanns H. Ø. Eriksen T. R. Lauknes M. Krautblatter S. Westermann Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling |
topic_facet |
Dynamic and structural geology QE500-639.5 |
description |
The warming and subsequent degradation of mountain permafrost within alpine areas represent an important process influencing the stability of steep slopes and rock faces. The unstable and monitored slopes of Mannen (Møre and Romsdal county, southern Norway) and Gámanjunni-3 (Troms and Finnmark county, northern Norway) were classified as high-risk sites by the Norwegian Geological Survey (NGU). Failure initiation has been suggested to be linked to permafrost degradation, but the detailed permafrost distribution at the sites is unknown. Rock wall (RW) temperature loggers at both sites have measured the thermal regime since 2015, showing mean rock surface temperatures between 2.5 and −1.6 ∘ C depending on site and topographic aspect. Between 2016 and 2019 we conducted 2D and 3D electrical resistivity tomography (ERT) surveys on the plateau and directly within the rock wall back scarp of the unstable slopes at both sites. In combination with geophysical laboratory analysis of rock wall samples from both sites, the ERT soundings indicate widespread permafrost areas, especially at Gámanjunni-3. Finally, we conducted 2D thermal modelling to evaluate the potential thermal regime, along with an analysis of available displacement rate measurements based on Global Navigation Satellite System (GNSS) and ground- and satellite-based interferometric synthetic aperture radar (InSAR) methods. Surface air and ground temperatures have increased significantly since ca. 1900 by 1 and 1.5 ∘ C, and the highest temperatures have been measured and modelled since 2000 at both study sites. We observed a seasonality of displacement, with increasing velocities during late winter and early spring and the highest velocities in June, probably related to water pressure variations during snowmelt. The displacement rates of Gámanjunni-3 rockslide co-vary with subsurface resistivity and modelled ground temperature. Increased displacement rates seem to be associated with sub-zero ground temperatures and higher ground resistivity. This might be ... |
format |
Article in Journal/Newspaper |
author |
B. Etzelmüller J. Czekirda F. Magnin P.-A. Duvillard L. Ravanel E. Malet A. Aspaas L. Kristensen I. Skrede G. D. Majala B. Jacobs J. Leinauer C. Hauck C. Hilbich M. Böhme R. Hermanns H. Ø. Eriksen T. R. Lauknes M. Krautblatter S. Westermann |
author_facet |
B. Etzelmüller J. Czekirda F. Magnin P.-A. Duvillard L. Ravanel E. Malet A. Aspaas L. Kristensen I. Skrede G. D. Majala B. Jacobs J. Leinauer C. Hauck C. Hilbich M. Böhme R. Hermanns H. Ø. Eriksen T. R. Lauknes M. Krautblatter S. Westermann |
author_sort |
B. Etzelmüller |
title |
Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling |
title_short |
Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling |
title_full |
Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling |
title_fullStr |
Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling |
title_full_unstemmed |
Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling |
title_sort |
permafrost in monitored unstable rock slopes in norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling |
publisher |
Copernicus Publications |
publishDate |
2022 |
url |
https://doi.org/10.5194/esurf-10-97-2022 https://doaj.org/article/a9e052c18d1a46b7878e9673c31b3c1f |
long_lat |
ENVELOPE(13.520,13.520,68.204,68.204) ENVELOPE(20.591,20.591,69.469,69.469) |
geographic |
Norway Mannen Gámanjunni |
geographic_facet |
Norway Mannen Gámanjunni |
genre |
Finnmark Northern Norway permafrost Finnmark Troms |
genre_facet |
Finnmark Northern Norway permafrost Finnmark Troms |
op_source |
Earth Surface Dynamics, Vol 10, Pp 97-129 (2022) |
op_relation |
https://esurf.copernicus.org/articles/10/97/2022/esurf-10-97-2022.pdf https://doaj.org/toc/2196-6311 https://doaj.org/toc/2196-632X doi:10.5194/esurf-10-97-2022 2196-6311 2196-632X https://doaj.org/article/a9e052c18d1a46b7878e9673c31b3c1f |
op_doi |
https://doi.org/10.5194/esurf-10-97-2022 |
container_title |
Earth Surface Dynamics |
container_volume |
10 |
container_issue |
1 |
container_start_page |
97 |
op_container_end_page |
129 |
_version_ |
1765999587584114688 |