Evaluation of Sea Ice Concentration Data Using Dual-Polarized Ratio Algorithm in Comparison With Other Satellite Passive Microwave Sea Ice Concentration Data Sets and Ship-Based Visual Observations

The dual-polarized ratio (DPR) algorithm is a new algorithm that enable calculation of Arctic sea ice concentration from the 36.5-GHz channel of the sensor Advanced Microwave Scanning Radiometer for EOS/Advanced Microwave Scanning Radiometer 2 (AMSR-E/AMSR2). In this paper, we demonstrate results th...

Full description

Bibliographic Details
Published in:Frontiers in Environmental Science
Main Authors: Fangyi Zong, Shugang Zhang, Ping Chen, Lipeng Yang, Qiuli Shao, Jinping Zhao, Lai Wei
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media S.A. 2022
Subjects:
Online Access:https://doi.org/10.3389/fenvs.2022.856289
https://doaj.org/article/a6d46039a5404f1a865c3f33522df47c
id ftdoajarticles:oai:doaj.org/article:a6d46039a5404f1a865c3f33522df47c
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:a6d46039a5404f1a865c3f33522df47c 2023-05-15T14:55:22+02:00 Evaluation of Sea Ice Concentration Data Using Dual-Polarized Ratio Algorithm in Comparison With Other Satellite Passive Microwave Sea Ice Concentration Data Sets and Ship-Based Visual Observations Fangyi Zong Shugang Zhang Ping Chen Lipeng Yang Qiuli Shao Jinping Zhao Lai Wei 2022-04-01T00:00:00Z https://doi.org/10.3389/fenvs.2022.856289 https://doaj.org/article/a6d46039a5404f1a865c3f33522df47c EN eng Frontiers Media S.A. https://www.frontiersin.org/articles/10.3389/fenvs.2022.856289/full https://doaj.org/toc/2296-665X 2296-665X doi:10.3389/fenvs.2022.856289 https://doaj.org/article/a6d46039a5404f1a865c3f33522df47c Frontiers in Environmental Science, Vol 10 (2022) Arctic sea ice concentraiton brightness temperature remote sensing products passive microwave Environmental sciences GE1-350 article 2022 ftdoajarticles https://doi.org/10.3389/fenvs.2022.856289 2022-12-31T11:41:53Z The dual-polarized ratio (DPR) algorithm is a new algorithm that enable calculation of Arctic sea ice concentration from the 36.5-GHz channel of the sensor Advanced Microwave Scanning Radiometer for EOS/Advanced Microwave Scanning Radiometer 2 (AMSR-E/AMSR2). In this paper, we demonstrate results that the sea ice concentration data using DPR algorithm (DPR-AMSR) are evaluated and compared with other eight Arctic sea ice concentration data products with respect to differences in sea ice concentration, sea ice area, and sea ice extent. On a pan-Arctic scale, the evaluation results are mostly very similar between DPR-AMSR and the bootstrap algorithm from AMSR-E/AMSR2 (BT-AMSR), the bootstrap algorithm from SSM/I or SSMIS (BT-SSMI), the ARTIST Sea Ice algorithm from AMSR-E/AMSR2 (ASI-AMSR), and the enhanced NASA Team algorithm from AMSR-E/AMSR2 (NT2-AMSR). Among of these products, the differences in sea ice concentration agree within ±5%. However, European Space Agency Climate Change Initiative algorithm from AMSR-E/AMSR2 (SICCI-AMSR), the European Organisation for the Exploitation of Meteorological Satellites Ocean and Sea Ice Satellite Application Facility from SSM/I or SSMIS (OSI-SSMI), the ARTIST Sea Ice algorithm from SSM/I or SSMIS (ASI-SSMI), and the NASA Team algorithm from SSM/I or SSMIS (NT1-SSMI) are all lower than DPR-AMSR at sea ice edge. And NT1-SSMI had the largest negative difference, which was lower than -15% or even 20%.The difference of sea ice area was consistently within ±0.5 million km2 between DPR-AMSR and BT-AMSR, BT-SSMI, ASI-AMSR, and NT2-AMSR in all years. The smallest difference was with BT-SSMI (less than 0.1 million km2), whereas the largest difference was with NT1-SSMI (up to 1.5 million km2). In comparisons of sea ice extent, BT-AMSR, NT1-SSMI, and NT2-AMSR estimates were consistent with that of DPR-AMSR and were within ±0.5 million km2. However, differences exceeded 0.5 million km2 between DPR-AMSR and the other data sets. When ship-based visual observation (OBS) values ranged from ... Article in Journal/Newspaper Arctic Climate change Sea ice Directory of Open Access Journals: DOAJ Articles Arctic Frontiers in Environmental Science 10
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Arctic
sea ice concentraiton
brightness temperature
remote sensing products
passive microwave
Environmental sciences
GE1-350
spellingShingle Arctic
sea ice concentraiton
brightness temperature
remote sensing products
passive microwave
Environmental sciences
GE1-350
Fangyi Zong
Shugang Zhang
Ping Chen
Lipeng Yang
Qiuli Shao
Jinping Zhao
Lai Wei
Evaluation of Sea Ice Concentration Data Using Dual-Polarized Ratio Algorithm in Comparison With Other Satellite Passive Microwave Sea Ice Concentration Data Sets and Ship-Based Visual Observations
topic_facet Arctic
sea ice concentraiton
brightness temperature
remote sensing products
passive microwave
Environmental sciences
GE1-350
description The dual-polarized ratio (DPR) algorithm is a new algorithm that enable calculation of Arctic sea ice concentration from the 36.5-GHz channel of the sensor Advanced Microwave Scanning Radiometer for EOS/Advanced Microwave Scanning Radiometer 2 (AMSR-E/AMSR2). In this paper, we demonstrate results that the sea ice concentration data using DPR algorithm (DPR-AMSR) are evaluated and compared with other eight Arctic sea ice concentration data products with respect to differences in sea ice concentration, sea ice area, and sea ice extent. On a pan-Arctic scale, the evaluation results are mostly very similar between DPR-AMSR and the bootstrap algorithm from AMSR-E/AMSR2 (BT-AMSR), the bootstrap algorithm from SSM/I or SSMIS (BT-SSMI), the ARTIST Sea Ice algorithm from AMSR-E/AMSR2 (ASI-AMSR), and the enhanced NASA Team algorithm from AMSR-E/AMSR2 (NT2-AMSR). Among of these products, the differences in sea ice concentration agree within ±5%. However, European Space Agency Climate Change Initiative algorithm from AMSR-E/AMSR2 (SICCI-AMSR), the European Organisation for the Exploitation of Meteorological Satellites Ocean and Sea Ice Satellite Application Facility from SSM/I or SSMIS (OSI-SSMI), the ARTIST Sea Ice algorithm from SSM/I or SSMIS (ASI-SSMI), and the NASA Team algorithm from SSM/I or SSMIS (NT1-SSMI) are all lower than DPR-AMSR at sea ice edge. And NT1-SSMI had the largest negative difference, which was lower than -15% or even 20%.The difference of sea ice area was consistently within ±0.5 million km2 between DPR-AMSR and BT-AMSR, BT-SSMI, ASI-AMSR, and NT2-AMSR in all years. The smallest difference was with BT-SSMI (less than 0.1 million km2), whereas the largest difference was with NT1-SSMI (up to 1.5 million km2). In comparisons of sea ice extent, BT-AMSR, NT1-SSMI, and NT2-AMSR estimates were consistent with that of DPR-AMSR and were within ±0.5 million km2. However, differences exceeded 0.5 million km2 between DPR-AMSR and the other data sets. When ship-based visual observation (OBS) values ranged from ...
format Article in Journal/Newspaper
author Fangyi Zong
Shugang Zhang
Ping Chen
Lipeng Yang
Qiuli Shao
Jinping Zhao
Lai Wei
author_facet Fangyi Zong
Shugang Zhang
Ping Chen
Lipeng Yang
Qiuli Shao
Jinping Zhao
Lai Wei
author_sort Fangyi Zong
title Evaluation of Sea Ice Concentration Data Using Dual-Polarized Ratio Algorithm in Comparison With Other Satellite Passive Microwave Sea Ice Concentration Data Sets and Ship-Based Visual Observations
title_short Evaluation of Sea Ice Concentration Data Using Dual-Polarized Ratio Algorithm in Comparison With Other Satellite Passive Microwave Sea Ice Concentration Data Sets and Ship-Based Visual Observations
title_full Evaluation of Sea Ice Concentration Data Using Dual-Polarized Ratio Algorithm in Comparison With Other Satellite Passive Microwave Sea Ice Concentration Data Sets and Ship-Based Visual Observations
title_fullStr Evaluation of Sea Ice Concentration Data Using Dual-Polarized Ratio Algorithm in Comparison With Other Satellite Passive Microwave Sea Ice Concentration Data Sets and Ship-Based Visual Observations
title_full_unstemmed Evaluation of Sea Ice Concentration Data Using Dual-Polarized Ratio Algorithm in Comparison With Other Satellite Passive Microwave Sea Ice Concentration Data Sets and Ship-Based Visual Observations
title_sort evaluation of sea ice concentration data using dual-polarized ratio algorithm in comparison with other satellite passive microwave sea ice concentration data sets and ship-based visual observations
publisher Frontiers Media S.A.
publishDate 2022
url https://doi.org/10.3389/fenvs.2022.856289
https://doaj.org/article/a6d46039a5404f1a865c3f33522df47c
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
Sea ice
genre_facet Arctic
Climate change
Sea ice
op_source Frontiers in Environmental Science, Vol 10 (2022)
op_relation https://www.frontiersin.org/articles/10.3389/fenvs.2022.856289/full
https://doaj.org/toc/2296-665X
2296-665X
doi:10.3389/fenvs.2022.856289
https://doaj.org/article/a6d46039a5404f1a865c3f33522df47c
op_doi https://doi.org/10.3389/fenvs.2022.856289
container_title Frontiers in Environmental Science
container_volume 10
_version_ 1766327159835590656