A New APEH Cluster with Antioxidant Functions in the Antarctic Hemoglobinless Icefish Chionodraco hamatus.

Acylpeptide hydrolase (APEH) is a ubiquitous cytosolic protease that plays an important role in the detoxification of oxidised proteins. In this work, to further explore the physiological role of this enzyme, two apeh cDNAs were isolated from the Chionodraco hamatus icefish, which lives in the highl...

Full description

Bibliographic Details
Published in:PLOS ONE
Main Authors: Alessia Riccio, Marta Gogliettino, Gianna Palmieri, Marco Balestrieri, Angelo Facchiano, Mosè Rossi, Stefania Palumbo, Giuseppe Monti, Ennio Cocca
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2015
Subjects:
R
Q
Online Access:https://doi.org/10.1371/journal.pone.0125594
https://doaj.org/article/a4ce8022459e4dd0a4583d6160c49b12
Description
Summary:Acylpeptide hydrolase (APEH) is a ubiquitous cytosolic protease that plays an important role in the detoxification of oxidised proteins. In this work, to further explore the physiological role of this enzyme, two apeh cDNAs were isolated from the Chionodraco hamatus icefish, which lives in the highly oxygenated Antarctic marine environment. The encoded proteins (APEH-1(Ch) and APEH-2(Ch)) were characterised in comparison with the uniquely expressed isoform from the temperate fish Dicentrarchus labrax (APEH-1Dl) and the two APEHs from the red-blooded Antarctic fish Trematomus bernacchii (APEH-1(Tb) and APEH-2(Tb)). Homology modelling and kinetic characterisation of the APEH isoforms provided new insights into their structure/function properties. APEH-2 isoforms were the only ones capable of hydrolysing oxidised proteins, with APEH-2(Ch) being more efficient than APEH-2(Tb) at this specific function. Therefore, this ability of APEH-2 isoforms is the result of an evolutionary adaptation due to the pressure of a richly oxygenated environment. The lack of expression of APEH-2 in the tissues of the temperate fish used as the controls further supported this hypothesis. In addition, analysis of gene expression showed a significant discrepancy between the levels of transcripts and those of proteins, especially for apeh-2 genes, which suggests the presence of post-transcriptional regulation mechanisms, triggered by cold-induced oxidative stress, that produce high basal levels of APEH-2 mRNA as a reserve that is ready to use in case of the accumulation of oxidised proteins.