A Phenological Approach to Spectral Differentiation of Low-Arctic Tundra Vegetation Communities, North Slope, Alaska
Arctic tundra ecosystems exhibit small-scale variations in species composition, micro-topography as well as significant spatial and temporal variations in moisture. These attributes result in similar spectral characteristics between distinct vegetation communities. In this study we examine spectral...
Published in: | Remote Sensing |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
MDPI AG
2017
|
Subjects: | |
Online Access: | https://doi.org/10.3390/rs9111200 https://doaj.org/article/9fbe305746db433fa75e05abb819f6e5 |
Summary: | Arctic tundra ecosystems exhibit small-scale variations in species composition, micro-topography as well as significant spatial and temporal variations in moisture. These attributes result in similar spectral characteristics between distinct vegetation communities. In this study we examine spectral variability at three phenological phases of leaf-out, maximum canopy, and senescence of ground-based spectroscopy, as well as a simulated Environmental Mapping and Analysis Program (EnMAP) and simulated Sentinel-2 reflectance spectra, from five dominant low-Arctic tundra vegetation communities in the Toolik Lake Research Area, Alaska, in order to inform spectral differentiation and subsequent vegetation classification at both the ground and satellite scale. We used the InStability Index (ISI), a ratio of between endmember and within endmember variability, to determine the most discriminative phenophase and wavelength regions for identification of each vegetation community. Our results show that the senescent phase was the most discriminative phenophase for the identification of the majority of communities when using both ground-based and simulated EnMAP reflectance spectra. Maximum canopy was the most discriminative phenophase for the majority of simulated Sentinel-2 reflectance data. As with previous ground-based spectral characterization of Alaskan low-Arctic tundra, the blue, red, and red-edge parts of the spectrum were most discriminative for all three reflectance datasets. Differences in vegetation colour driven by pigment dynamics appear to be the optimal areas of the spectrum for differentiation using high spectral resolution field spectroscopy and simulated hyperspectral EnMAP and multispectral Sentinel-2 reflectance spectra. The phenological aspect of this study highlights the potential exploitation of more extreme colour differences in vegetation observed during senescence when hyperspectral data is available. The results provide insight into both the community and seasonal dynamics of spectral variability ... |
---|