An integrated overview of the bacterial flora composition of Hyalomma anatolicum, the main vector of CCHF.
The microbial flora associated with Hyalomma anatolicum ticks was investigated using culture-dependent (CD) and independent (next generation sequencing, NGS) methods. The bacterial profiles of different organs, development stages, sexes, and of host cattle skins were analyzed using the CD method. Th...
Published in: | PLOS Neglected Tropical Diseases |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Public Library of Science (PLoS)
2021
|
Subjects: | |
Online Access: | https://doi.org/10.1371/journal.pntd.0009480 https://doaj.org/article/9f1ee44990ac4ae8bf3e452c510b376e |
Summary: | The microbial flora associated with Hyalomma anatolicum ticks was investigated using culture-dependent (CD) and independent (next generation sequencing, NGS) methods. The bacterial profiles of different organs, development stages, sexes, and of host cattle skins were analyzed using the CD method. The egg and female gut microbiota were investigated using NGS. Fourteen distinct bacterial strains were identified using the CD method, of which Bacillus subtilis predominated in eggs, larval guts and in adult female and male guts, suggesting probable transovarial transmission. Bacillus velezensis and B. subtilis were identified in cattle skin and tick samples, suggesting that skin is the origin of tick bacteria. H.anatolicum males harbour lower bacterial diversity and composition than females. The NGS analysis revealed five different bacterial phyla across all samples, Proteobacteria contributing to >95% of the bacteria. In all, 56611sequences were generated representing 6,023 OTUs per female gut and 421 OTUs per egg. Francisellaceae family and Francisella make up the vast majority of the OTUs. Our findings are consistent with interference between Francisella and Rickettsia. The CD method identified bacteria, such B. subtilis that are candidates for vector control intervention approaches such paratransgenesis whereas NGS revealed high Francisella spp. prevalence, indicating that integrated methods are more accurate to characterize microbial community and diversity. |
---|