Immunophoretic rapid diagnostic tests as a source of immunoglobulins for estimating malaria sero-prevalence and transmission intensity

Abstract Background Sero-epidemiological methods are being developed as a tool for rapid assessment of malaria transmission intensity. Simple blood collection methods for use in field settings will make this more feasible. This paper describes validation of such a method, by analysing immunoglobulin...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Reyburn Hugh, Mtove George, Stewart Laveta, Mweya Clement, Williams Geoffrey S, Cook Jackie, Corran Patrick H, Riley Eleanor M, Drakeley Chris J
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2009
Subjects:
Online Access:https://doi.org/10.1186/1475-2875-8-168
https://doaj.org/article/9dfac79b158543dfb3b49afc71af43fe
Description
Summary:Abstract Background Sero-epidemiological methods are being developed as a tool for rapid assessment of malaria transmission intensity. Simple blood collection methods for use in field settings will make this more feasible. This paper describes validation of such a method, by analysing immunoglobulins from blood retained within immunophoretic rapid diagnostic tests (RDTs) for Plasmodium falciparum . RDTs are now widely used for the diagnosis of malaria and estimation of parasite rates, and this method represents a further use for these devices in malaria control. Methods Immunoglobulins eluted from RDTs, designed to detect parasite histidine rich protein-2 (HRP-2), were analysed by indirect ELISA for IgG recognizing the P. falciparum blood stage antigens merozoite surface protein-1 19 (MSP-1 19 ) and apical membrane antigen-1 (AMA-1). Optimal storage conditions for RDTs were evaluated by comparing antibody responses from RDTs stored in dry or humid conditions at 4°C or at ambient temperature (with or without air-conditioning) for 7, 31 or 70 days. Antibody levels estimated using 3,700 RDT samples from attendees at health facilities in North-eastern Tanzania were compared with contemporaneously collected filter paper blood spots (FPBS) and used to estimate seroconversion rates. Results Storage of RDTs at 4°C was optimal for immunoglobulin recovery but short-term storage at ambient temperatures did not substantially affect anti-malarial IgG levels. Results from RDTs were comparable with those from FPBSs, for both antigens. RDT-generated titres tended to be slightly higher than those generated from FPBSs, possibly due to greater recovery of immunoglobulins from RDTs compared to filter paper. Importantly, however, RDT-based seroconversion rates, and hence serological estimates of malaria transmission intensity, agreed closely with those from FPBSs. Conclusion RDTs represent a practical option for collecting blood for sero-epidemiological surveys, with potential cost and logistical advantages over filter paper and ...