Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change

The Pole-Equator-Pole (PEP) projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere) programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science al...

Full description

Bibliographic Details
Main Authors: J. Shulmeister, D. T. Rodbell, M. K. Gagan, G. O. Seltzer
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2006
Subjects:
Online Access:https://doaj.org/article/9deca129fe9f4d8e9b5fc03bac773c35
id ftdoajarticles:oai:doaj.org/article:9deca129fe9f4d8e9b5fc03bac773c35
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:9deca129fe9f4d8e9b5fc03bac773c35 2023-05-15T13:53:49+02:00 Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change J. Shulmeister D. T. Rodbell M. K. Gagan G. O. Seltzer 2006-01-01T00:00:00Z https://doaj.org/article/9deca129fe9f4d8e9b5fc03bac773c35 EN eng Copernicus Publications http://www.clim-past.net/2/167/2006/cp-2-167-2006.pdf https://doaj.org/toc/1814-9324 https://doaj.org/toc/1814-9332 1814-9324 1814-9332 https://doaj.org/article/9deca129fe9f4d8e9b5fc03bac773c35 Climate of the Past, Vol 2, Iss 2, Pp 167-185 (2006) Environmental pollution TD172-193.5 Environmental protection TD169-171.8 Environmental sciences GE1-350 article 2006 ftdoajarticles 2022-12-30T22:15:14Z The Pole-Equator-Pole (PEP) projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere) programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science allows us to constrain predictions for future climate change and to contribute to the management of consequent environmental changes. We identify three broad areas where PEP science makes key contributions. 1. The pattern of global changes. Knowing the exact timing of glacial advances (synchronous or otherwise) during the last glaciation is critical to understanding inter-hemispheric links in climate. Work in PEPI demonstrated that the tropical Andes in South America were deglaciated earlier than the Northern Hemisphere (NH) and that an extended warming began there ca.21 000 cal years BP. The general pattern is consistent with Antarctica and has now been replicated from studies in Southern Hemisphere (SH) regions of the PEPII transect. That significant deglaciation of SH alpine systems and Antarctica led deglaciation of NH ice sheets may reflect either i) faster response times in alpine systems and Antarctica, ii) regional moisture patterns that influenced glacier mass balance, or iii) a SH temperature forcing that led changes in the NH. This highlights the limitations of current understanding and the need for further fundamental paleoclimate research. 2. Changes in modes of operation of oscillatory climate systems. Work across all the PEP transects has led to the recognition that the El Niño Southern Oscillation (ENSO) phenomenon has changed markedly through time. It now appears that ENSO operated during the last glacial termination and during the early Holocene, but that precipitation teleconnections even within the Pacific Basin were turned down, or off. In the modern ENSO phenomenon both inter-annual and seven year periodicities are present, with the inter-annual signal dominant. Paleo-data demonstrate that the ... Article in Journal/Newspaper Antarc* Antarctica Directory of Open Access Journals: DOAJ Articles Pacific
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Environmental pollution
TD172-193.5
Environmental protection
TD169-171.8
Environmental sciences
GE1-350
spellingShingle Environmental pollution
TD172-193.5
Environmental protection
TD169-171.8
Environmental sciences
GE1-350
J. Shulmeister
D. T. Rodbell
M. K. Gagan
G. O. Seltzer
Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change
topic_facet Environmental pollution
TD172-193.5
Environmental protection
TD169-171.8
Environmental sciences
GE1-350
description The Pole-Equator-Pole (PEP) projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere) programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science allows us to constrain predictions for future climate change and to contribute to the management of consequent environmental changes. We identify three broad areas where PEP science makes key contributions. 1. The pattern of global changes. Knowing the exact timing of glacial advances (synchronous or otherwise) during the last glaciation is critical to understanding inter-hemispheric links in climate. Work in PEPI demonstrated that the tropical Andes in South America were deglaciated earlier than the Northern Hemisphere (NH) and that an extended warming began there ca.21 000 cal years BP. The general pattern is consistent with Antarctica and has now been replicated from studies in Southern Hemisphere (SH) regions of the PEPII transect. That significant deglaciation of SH alpine systems and Antarctica led deglaciation of NH ice sheets may reflect either i) faster response times in alpine systems and Antarctica, ii) regional moisture patterns that influenced glacier mass balance, or iii) a SH temperature forcing that led changes in the NH. This highlights the limitations of current understanding and the need for further fundamental paleoclimate research. 2. Changes in modes of operation of oscillatory climate systems. Work across all the PEP transects has led to the recognition that the El Niño Southern Oscillation (ENSO) phenomenon has changed markedly through time. It now appears that ENSO operated during the last glacial termination and during the early Holocene, but that precipitation teleconnections even within the Pacific Basin were turned down, or off. In the modern ENSO phenomenon both inter-annual and seven year periodicities are present, with the inter-annual signal dominant. Paleo-data demonstrate that the ...
format Article in Journal/Newspaper
author J. Shulmeister
D. T. Rodbell
M. K. Gagan
G. O. Seltzer
author_facet J. Shulmeister
D. T. Rodbell
M. K. Gagan
G. O. Seltzer
author_sort J. Shulmeister
title Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change
title_short Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change
title_full Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change
title_fullStr Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change
title_full_unstemmed Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change
title_sort inter-hemispheric linkages in climate change: paleo-perspectives for future climate change
publisher Copernicus Publications
publishDate 2006
url https://doaj.org/article/9deca129fe9f4d8e9b5fc03bac773c35
geographic Pacific
geographic_facet Pacific
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_source Climate of the Past, Vol 2, Iss 2, Pp 167-185 (2006)
op_relation http://www.clim-past.net/2/167/2006/cp-2-167-2006.pdf
https://doaj.org/toc/1814-9324
https://doaj.org/toc/1814-9332
1814-9324
1814-9332
https://doaj.org/article/9deca129fe9f4d8e9b5fc03bac773c35
_version_ 1766259269575901184