Harmonic Analysis of a Nonstationary Series of Temperature Paleoreconstruction for the Central Part of Greenland

The results of the investigations of a transformed series of reconstructed air temperature data for the central part of Greenland with an increment of 30 years have been presented. Stationarization of a ~ 50,000-years’ series of the reconstructed air temperature in the central part of Greenland acco...

Full description

Bibliographic Details
Main Authors: T.E. Danova, B.V. Perelygin
Format: Article in Journal/Newspaper
Language:English
Russian
Published: Kazan Federal University 2016
Subjects:
Q
Online Access:https://doaj.org/article/986859b72fbc4dc2a64441a879ad5d5a
Description
Summary:The results of the investigations of a transformed series of reconstructed air temperature data for the central part of Greenland with an increment of 30 years have been presented. Stationarization of a ~ 50,000-years’ series of the reconstructed air temperature in the central part of Greenland according to ice core data has been performed using mathematical expectation. To obtain mathematical expectation estimation, the smoothing procedure by the methods of moving average and wavelet analysis has been carried out. Fourier’s transformation has been applied repeatedly to the stationarized series with changing the averaging time in the process of smoothing. Three averaging time values have been selected for the investigations: ~ 400–500 years, ~ 2,000 years, and ~ 4,000 years. Stationarization of the reconstructed temperature series with the help of wavelet transformation showed the best results when applying the averaging time of ~ 400 and ~ 2000 years, the trends well characterize the initial temperature series, there-by revealing the main patterns of its dynamics. Using the period with the averaging time of ~ 4,000 years showed the worst result: significant events of the main temperature series were lost in the process of averaging. The obtained results well correspond to cycling known to be inherent to the climatic system of the planet; the detected modes of 1,470 ± 500 years are comparable to the Dansgaard–Oeschger and Bond oscillations.