Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0)
Automatic lidars and ceilometers (ALCs) provide valuable information on cloud and aerosols but have not been systematically used in the evaluation of general circulation models (GCMs) and numerical weather prediction (NWP) models. Obstacles associated with the diversity of instruments, a lack of sta...
Published in: | Geoscientific Model Development |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2021
|
Subjects: | |
Online Access: | https://doi.org/10.5194/gmd-14-43-2021 https://doaj.org/article/97a77f47bd164085969b006084e5495e |
id |
ftdoajarticles:oai:doaj.org/article:97a77f47bd164085969b006084e5495e |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:97a77f47bd164085969b006084e5495e 2023-05-15T13:44:40+02:00 Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0) P. Kuma A. J. McDonald O. Morgenstern R. Querel I. Silber C. J. Flynn 2021-01-01T00:00:00Z https://doi.org/10.5194/gmd-14-43-2021 https://doaj.org/article/97a77f47bd164085969b006084e5495e EN eng Copernicus Publications https://gmd.copernicus.org/articles/14/43/2021/gmd-14-43-2021.pdf https://doaj.org/toc/1991-959X https://doaj.org/toc/1991-9603 doi:10.5194/gmd-14-43-2021 1991-959X 1991-9603 https://doaj.org/article/97a77f47bd164085969b006084e5495e Geoscientific Model Development, Vol 14, Pp 43-72 (2021) Geology QE1-996.5 article 2021 ftdoajarticles https://doi.org/10.5194/gmd-14-43-2021 2022-12-31T06:54:51Z Automatic lidars and ceilometers (ALCs) provide valuable information on cloud and aerosols but have not been systematically used in the evaluation of general circulation models (GCMs) and numerical weather prediction (NWP) models. Obstacles associated with the diversity of instruments, a lack of standardisation of data products and open processing tools mean that the value of large ALC networks worldwide is not being realised. We discuss a tool, called the Automatic Lidar and Ceilometer Framework (ALCF), that overcomes these problems and also includes a ground-based lidar simulator, which calculates the radiative transfer of laser radiation and allows one-to-one comparison with models. Our ground-based lidar simulator is based on the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP), which has been extensively used for spaceborne lidar intercomparisons. The ALCF implements all steps needed to transform and calibrate raw ALC data and create simulated attenuated volume backscattering coefficient profiles for one-to-one comparison and complete statistical analysis of clouds. The framework supports multiple common commercial ALCs (Vaisala CL31, CL51, Lufft CHM 15k and Droplet Measurement Technologies MiniMPL), reanalyses (JRA-55, ERA5 and MERRA-2) and models (the Unified Model and AMPS – the Antarctic Mesoscale Prediction System). To demonstrate its capabilities, we present case studies evaluating cloud in the supported reanalyses and models using CL31, CL51, CHM 15k and MiniMPL observations at three sites in New Zealand. We show that the reanalyses and models generally underestimate cloud fraction. If sufficiently high-temporal-resolution model output is available (better than 6-hourly), a direct comparison of individual clouds is also possible. We demonstrate that the ALCF can be used as a generic evaluation tool to examine cloud occurrence and cloud properties in reanalyses, NWP models, and GCMs, potentially utilising the large amounts of ALC data already available. This ... Article in Journal/Newspaper Antarc* Antarctic Directory of Open Access Journals: DOAJ Articles Antarctic Merra ENVELOPE(12.615,12.615,65.816,65.816) New Zealand The Antarctic Geoscientific Model Development 14 1 43 72 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Geology QE1-996.5 |
spellingShingle |
Geology QE1-996.5 P. Kuma A. J. McDonald O. Morgenstern R. Querel I. Silber C. J. Flynn Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0) |
topic_facet |
Geology QE1-996.5 |
description |
Automatic lidars and ceilometers (ALCs) provide valuable information on cloud and aerosols but have not been systematically used in the evaluation of general circulation models (GCMs) and numerical weather prediction (NWP) models. Obstacles associated with the diversity of instruments, a lack of standardisation of data products and open processing tools mean that the value of large ALC networks worldwide is not being realised. We discuss a tool, called the Automatic Lidar and Ceilometer Framework (ALCF), that overcomes these problems and also includes a ground-based lidar simulator, which calculates the radiative transfer of laser radiation and allows one-to-one comparison with models. Our ground-based lidar simulator is based on the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP), which has been extensively used for spaceborne lidar intercomparisons. The ALCF implements all steps needed to transform and calibrate raw ALC data and create simulated attenuated volume backscattering coefficient profiles for one-to-one comparison and complete statistical analysis of clouds. The framework supports multiple common commercial ALCs (Vaisala CL31, CL51, Lufft CHM 15k and Droplet Measurement Technologies MiniMPL), reanalyses (JRA-55, ERA5 and MERRA-2) and models (the Unified Model and AMPS – the Antarctic Mesoscale Prediction System). To demonstrate its capabilities, we present case studies evaluating cloud in the supported reanalyses and models using CL31, CL51, CHM 15k and MiniMPL observations at three sites in New Zealand. We show that the reanalyses and models generally underestimate cloud fraction. If sufficiently high-temporal-resolution model output is available (better than 6-hourly), a direct comparison of individual clouds is also possible. We demonstrate that the ALCF can be used as a generic evaluation tool to examine cloud occurrence and cloud properties in reanalyses, NWP models, and GCMs, potentially utilising the large amounts of ALC data already available. This ... |
format |
Article in Journal/Newspaper |
author |
P. Kuma A. J. McDonald O. Morgenstern R. Querel I. Silber C. J. Flynn |
author_facet |
P. Kuma A. J. McDonald O. Morgenstern R. Querel I. Silber C. J. Flynn |
author_sort |
P. Kuma |
title |
Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0) |
title_short |
Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0) |
title_full |
Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0) |
title_fullStr |
Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0) |
title_full_unstemmed |
Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0) |
title_sort |
ground-based lidar processing and simulator framework for comparing models and observations (alcf 1.0) |
publisher |
Copernicus Publications |
publishDate |
2021 |
url |
https://doi.org/10.5194/gmd-14-43-2021 https://doaj.org/article/97a77f47bd164085969b006084e5495e |
long_lat |
ENVELOPE(12.615,12.615,65.816,65.816) |
geographic |
Antarctic Merra New Zealand The Antarctic |
geographic_facet |
Antarctic Merra New Zealand The Antarctic |
genre |
Antarc* Antarctic |
genre_facet |
Antarc* Antarctic |
op_source |
Geoscientific Model Development, Vol 14, Pp 43-72 (2021) |
op_relation |
https://gmd.copernicus.org/articles/14/43/2021/gmd-14-43-2021.pdf https://doaj.org/toc/1991-959X https://doaj.org/toc/1991-9603 doi:10.5194/gmd-14-43-2021 1991-959X 1991-9603 https://doaj.org/article/97a77f47bd164085969b006084e5495e |
op_doi |
https://doi.org/10.5194/gmd-14-43-2021 |
container_title |
Geoscientific Model Development |
container_volume |
14 |
container_issue |
1 |
container_start_page |
43 |
op_container_end_page |
72 |
_version_ |
1766204671217631232 |