The VIIRS Sea-Ice Albedo Product Generation and Preliminary Validation
Ice albedo feedback amplifies climate change signals and thus affects the global climate. Global long-term records on sea-ice albedo are important to characterize the regional or global energy budget. As the successor of MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared...
Published in: | Remote Sensing |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
MDPI AG
2018
|
Subjects: | |
Online Access: | https://doi.org/10.3390/rs10111826 https://doaj.org/article/92037b46eb674e4fa01ddd2937f47fd4 |
id |
ftdoajarticles:oai:doaj.org/article:92037b46eb674e4fa01ddd2937f47fd4 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:92037b46eb674e4fa01ddd2937f47fd4 2023-05-15T13:10:41+02:00 The VIIRS Sea-Ice Albedo Product Generation and Preliminary Validation Jingjing Peng Yunyue Yu Peng Yu Shunlin Liang 2018-11-01T00:00:00Z https://doi.org/10.3390/rs10111826 https://doaj.org/article/92037b46eb674e4fa01ddd2937f47fd4 EN eng MDPI AG https://www.mdpi.com/2072-4292/10/11/1826 https://doaj.org/toc/2072-4292 2072-4292 doi:10.3390/rs10111826 https://doaj.org/article/92037b46eb674e4fa01ddd2937f47fd4 Remote Sensing, Vol 10, Iss 11, p 1826 (2018) albedo sea ice VIIRS Arctic PROMICE GC-NET validation Science Q article 2018 ftdoajarticles https://doi.org/10.3390/rs10111826 2022-12-31T11:25:45Z Ice albedo feedback amplifies climate change signals and thus affects the global climate. Global long-term records on sea-ice albedo are important to characterize the regional or global energy budget. As the successor of MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite) started its observation from October 2011 on S-NPP (Suomi National Polar-orbiting Partnership). It has improved upon the capabilities of the operational Advanced Very High Resolution Radiometer (AVHRR) and provides observation continuity with MODIS. We used a direct estimation algorithm to produce a VIIRS sea-ice albedo (VSIA) product, which will be operational in the National Oceanic and Atmospheric Administration’s (NOAA) S-NPP Data Exploration (NDE) version of the VIIRS albedo product. The algorithm is developed from the angular bin regression method to simulate the sea-ice surface bidirectional reflectance distribution function (BRDF) from physical models, which can represent different sea-ice types and vary mixing fractions among snow, ice, and seawater. We compared the VSIA with six years of ground measurements at 30 automatic weather stations from the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) and the Greenland Climate Network (GC-NET) as a proxy for sea-ice albedo. The results show that the VSIA product highly agreed with the station measurements with low bias (about 0.03) and low root mean square error (RMSE) (about 0.07) considering the Joint Polar Satellite System (JPSS) requirement is 0.05 and 0.08 at 4 km scale, respectively. We also evaluated the VSIA using two datasets of field measured sea-ice albedo from previous field campaigns. The comparisons suggest that VSIA generally matches the magnitude of the ground measurements, with a bias of 0.09 between the instantaneous albedos in the central Arctic and a bias of 0.077 between the daily mean albedos near Alaska. The discrepancy is mainly due to the scale difference at both spatial and temporal dimensions and ... Article in Journal/Newspaper albedo Arctic Climate change Greenland Ice Sheet Sea ice Alaska Directory of Open Access Journals: DOAJ Articles Arctic Greenland Remote Sensing 10 11 1826 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
albedo sea ice VIIRS Arctic PROMICE GC-NET validation Science Q |
spellingShingle |
albedo sea ice VIIRS Arctic PROMICE GC-NET validation Science Q Jingjing Peng Yunyue Yu Peng Yu Shunlin Liang The VIIRS Sea-Ice Albedo Product Generation and Preliminary Validation |
topic_facet |
albedo sea ice VIIRS Arctic PROMICE GC-NET validation Science Q |
description |
Ice albedo feedback amplifies climate change signals and thus affects the global climate. Global long-term records on sea-ice albedo are important to characterize the regional or global energy budget. As the successor of MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite) started its observation from October 2011 on S-NPP (Suomi National Polar-orbiting Partnership). It has improved upon the capabilities of the operational Advanced Very High Resolution Radiometer (AVHRR) and provides observation continuity with MODIS. We used a direct estimation algorithm to produce a VIIRS sea-ice albedo (VSIA) product, which will be operational in the National Oceanic and Atmospheric Administration’s (NOAA) S-NPP Data Exploration (NDE) version of the VIIRS albedo product. The algorithm is developed from the angular bin regression method to simulate the sea-ice surface bidirectional reflectance distribution function (BRDF) from physical models, which can represent different sea-ice types and vary mixing fractions among snow, ice, and seawater. We compared the VSIA with six years of ground measurements at 30 automatic weather stations from the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) and the Greenland Climate Network (GC-NET) as a proxy for sea-ice albedo. The results show that the VSIA product highly agreed with the station measurements with low bias (about 0.03) and low root mean square error (RMSE) (about 0.07) considering the Joint Polar Satellite System (JPSS) requirement is 0.05 and 0.08 at 4 km scale, respectively. We also evaluated the VSIA using two datasets of field measured sea-ice albedo from previous field campaigns. The comparisons suggest that VSIA generally matches the magnitude of the ground measurements, with a bias of 0.09 between the instantaneous albedos in the central Arctic and a bias of 0.077 between the daily mean albedos near Alaska. The discrepancy is mainly due to the scale difference at both spatial and temporal dimensions and ... |
format |
Article in Journal/Newspaper |
author |
Jingjing Peng Yunyue Yu Peng Yu Shunlin Liang |
author_facet |
Jingjing Peng Yunyue Yu Peng Yu Shunlin Liang |
author_sort |
Jingjing Peng |
title |
The VIIRS Sea-Ice Albedo Product Generation and Preliminary Validation |
title_short |
The VIIRS Sea-Ice Albedo Product Generation and Preliminary Validation |
title_full |
The VIIRS Sea-Ice Albedo Product Generation and Preliminary Validation |
title_fullStr |
The VIIRS Sea-Ice Albedo Product Generation and Preliminary Validation |
title_full_unstemmed |
The VIIRS Sea-Ice Albedo Product Generation and Preliminary Validation |
title_sort |
viirs sea-ice albedo product generation and preliminary validation |
publisher |
MDPI AG |
publishDate |
2018 |
url |
https://doi.org/10.3390/rs10111826 https://doaj.org/article/92037b46eb674e4fa01ddd2937f47fd4 |
geographic |
Arctic Greenland |
geographic_facet |
Arctic Greenland |
genre |
albedo Arctic Climate change Greenland Ice Sheet Sea ice Alaska |
genre_facet |
albedo Arctic Climate change Greenland Ice Sheet Sea ice Alaska |
op_source |
Remote Sensing, Vol 10, Iss 11, p 1826 (2018) |
op_relation |
https://www.mdpi.com/2072-4292/10/11/1826 https://doaj.org/toc/2072-4292 2072-4292 doi:10.3390/rs10111826 https://doaj.org/article/92037b46eb674e4fa01ddd2937f47fd4 |
op_doi |
https://doi.org/10.3390/rs10111826 |
container_title |
Remote Sensing |
container_volume |
10 |
container_issue |
11 |
container_start_page |
1826 |
_version_ |
1766238837548253184 |