Weakening of springtime Arctic ozone depletion with climate change
In the Arctic stratosphere, the combination of chemical ozone depletion by halogenated ozone-depleting substances (hODSs) and dynamic fluctuations can lead to severe ozone minima. These Arctic ozone minima are of great societal concern due to their health and climate impacts. Owing to the success of...
Published in: | Atmospheric Chemistry and Physics |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2023
|
Subjects: | |
Online Access: | https://doi.org/10.5194/acp-23-10235-2023 https://doaj.org/article/8c43aa82f0754f1384264b41377b3e72 |
_version_ | 1821810151470923776 |
---|---|
author | M. Friedel G. Chiodo T. Sukhodolov J. Keeble T. Peter S. Seeber A. Stenke H. Akiyoshi E. Rozanov D. Plummer P. Jöckel G. Zeng O. Morgenstern B. Josse |
author_facet | M. Friedel G. Chiodo T. Sukhodolov J. Keeble T. Peter S. Seeber A. Stenke H. Akiyoshi E. Rozanov D. Plummer P. Jöckel G. Zeng O. Morgenstern B. Josse |
author_sort | M. Friedel |
collection | Directory of Open Access Journals: DOAJ Articles |
container_issue | 17 |
container_start_page | 10235 |
container_title | Atmospheric Chemistry and Physics |
container_volume | 23 |
description | In the Arctic stratosphere, the combination of chemical ozone depletion by halogenated ozone-depleting substances (hODSs) and dynamic fluctuations can lead to severe ozone minima. These Arctic ozone minima are of great societal concern due to their health and climate impacts. Owing to the success of the Montreal Protocol, hODSs in the stratosphere are gradually declining, resulting in a recovery of the ozone layer. On the other hand, continued greenhouse gas (GHG) emissions cool the stratosphere, possibly enhancing the formation of polar stratospheric clouds (PSCs) and, thus, enabling more efficient chemical ozone destruction. Other processes, such as the acceleration of the Brewer–Dobson circulation, also affect stratospheric temperatures, further complicating the picture. Therefore, it is currently unclear whether major Arctic ozone minima will still occur at the end of the 21st century despite decreasing hODSs. We have examined this question for different emission pathways using simulations conducted within the Chemistry-Climate Model Initiative (CCMI-1 and CCMI-2022) and found large differences in the models' ability to simulate the magnitude of ozone minima in the present-day climate. Models with a generally too-cold polar stratosphere (cold bias) produce pronounced ozone minima under present-day climate conditions because they simulate more PSCs and, thus, high concentrations of active chlorine species ( ClO x ). These models predict the largest decrease in ozone minima in the future. Conversely, models with a warm polar stratosphere (warm bias) have the smallest sensitivity of ozone minima to future changes in hODS and GHG concentrations. As a result, the scatter among models in terms of the magnitude of Arctic spring ozone minima will decrease in the future. Overall, these results suggest that Arctic ozone minima will become weaker over the next decades, largely due to the decline in hODS abundances. We note that none of the models analysed here project a notable increase of ozone minima in the future. ... |
format | Article in Journal/Newspaper |
genre | Arctic Climate change |
genre_facet | Arctic Climate change |
geographic | Arctic |
geographic_facet | Arctic |
id | ftdoajarticles:oai:doaj.org/article:8c43aa82f0754f1384264b41377b3e72 |
institution | Open Polar |
language | English |
op_collection_id | ftdoajarticles |
op_container_end_page | 10254 |
op_doi | https://doi.org/10.5194/acp-23-10235-2023 |
op_relation | https://acp.copernicus.org/articles/23/10235/2023/acp-23-10235-2023.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 doi:10.5194/acp-23-10235-2023 1680-7316 1680-7324 https://doaj.org/article/8c43aa82f0754f1384264b41377b3e72 |
op_source | Atmospheric Chemistry and Physics, Vol 23, Pp 10235-10254 (2023) |
publishDate | 2023 |
publisher | Copernicus Publications |
record_format | openpolar |
spelling | ftdoajarticles:oai:doaj.org/article:8c43aa82f0754f1384264b41377b3e72 2025-01-16T20:15:48+00:00 Weakening of springtime Arctic ozone depletion with climate change M. Friedel G. Chiodo T. Sukhodolov J. Keeble T. Peter S. Seeber A. Stenke H. Akiyoshi E. Rozanov D. Plummer P. Jöckel G. Zeng O. Morgenstern B. Josse 2023-09-01T00:00:00Z https://doi.org/10.5194/acp-23-10235-2023 https://doaj.org/article/8c43aa82f0754f1384264b41377b3e72 EN eng Copernicus Publications https://acp.copernicus.org/articles/23/10235/2023/acp-23-10235-2023.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 doi:10.5194/acp-23-10235-2023 1680-7316 1680-7324 https://doaj.org/article/8c43aa82f0754f1384264b41377b3e72 Atmospheric Chemistry and Physics, Vol 23, Pp 10235-10254 (2023) Physics QC1-999 Chemistry QD1-999 article 2023 ftdoajarticles https://doi.org/10.5194/acp-23-10235-2023 2023-09-17T00:36:30Z In the Arctic stratosphere, the combination of chemical ozone depletion by halogenated ozone-depleting substances (hODSs) and dynamic fluctuations can lead to severe ozone minima. These Arctic ozone minima are of great societal concern due to their health and climate impacts. Owing to the success of the Montreal Protocol, hODSs in the stratosphere are gradually declining, resulting in a recovery of the ozone layer. On the other hand, continued greenhouse gas (GHG) emissions cool the stratosphere, possibly enhancing the formation of polar stratospheric clouds (PSCs) and, thus, enabling more efficient chemical ozone destruction. Other processes, such as the acceleration of the Brewer–Dobson circulation, also affect stratospheric temperatures, further complicating the picture. Therefore, it is currently unclear whether major Arctic ozone minima will still occur at the end of the 21st century despite decreasing hODSs. We have examined this question for different emission pathways using simulations conducted within the Chemistry-Climate Model Initiative (CCMI-1 and CCMI-2022) and found large differences in the models' ability to simulate the magnitude of ozone minima in the present-day climate. Models with a generally too-cold polar stratosphere (cold bias) produce pronounced ozone minima under present-day climate conditions because they simulate more PSCs and, thus, high concentrations of active chlorine species ( ClO x ). These models predict the largest decrease in ozone minima in the future. Conversely, models with a warm polar stratosphere (warm bias) have the smallest sensitivity of ozone minima to future changes in hODS and GHG concentrations. As a result, the scatter among models in terms of the magnitude of Arctic spring ozone minima will decrease in the future. Overall, these results suggest that Arctic ozone minima will become weaker over the next decades, largely due to the decline in hODS abundances. We note that none of the models analysed here project a notable increase of ozone minima in the future. ... Article in Journal/Newspaper Arctic Climate change Directory of Open Access Journals: DOAJ Articles Arctic Atmospheric Chemistry and Physics 23 17 10235 10254 |
spellingShingle | Physics QC1-999 Chemistry QD1-999 M. Friedel G. Chiodo T. Sukhodolov J. Keeble T. Peter S. Seeber A. Stenke H. Akiyoshi E. Rozanov D. Plummer P. Jöckel G. Zeng O. Morgenstern B. Josse Weakening of springtime Arctic ozone depletion with climate change |
title | Weakening of springtime Arctic ozone depletion with climate change |
title_full | Weakening of springtime Arctic ozone depletion with climate change |
title_fullStr | Weakening of springtime Arctic ozone depletion with climate change |
title_full_unstemmed | Weakening of springtime Arctic ozone depletion with climate change |
title_short | Weakening of springtime Arctic ozone depletion with climate change |
title_sort | weakening of springtime arctic ozone depletion with climate change |
topic | Physics QC1-999 Chemistry QD1-999 |
topic_facet | Physics QC1-999 Chemistry QD1-999 |
url | https://doi.org/10.5194/acp-23-10235-2023 https://doaj.org/article/8c43aa82f0754f1384264b41377b3e72 |