Arctic tropospheric ozone: assessment of current knowledge and model performance

As the third most important greenhouse gas (GHG) after carbon dioxide (CO 2 ) and methane ( CH 4 ), tropospheric ozone (O 3 ) is also an air pollutant causing damage to human health and ecosystems. This study brings together recent research on observations and modeling of tropospheric O 3 in the Arc...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: C. H. Whaley, K. S. Law, J. L. Hjorth, H. Skov, S. R. Arnold, J. Langner, J. B. Pernov, G. Bergeron, I. Bourgeois, J. H. Christensen, R.-Y. Chien, M. Deushi, X. Dong, P. Effertz, G. Faluvegi, M. Flanner, J. S. Fu, M. Gauss, G. Huey, U. Im, R. Kivi, L. Marelle, T. Onishi, N. Oshima, I. Petropavlovskikh, J. Peischl, D. A. Plummer, L. Pozzoli, J.-C. Raut, T. Ryerson, R. Skeie, S. Solberg, M. A. Thomas, C. Thompson, K. Tsigaridis, S. Tsyro, S. T. Turnock, K. von Salzen, D. W. Tarasick
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2023
Subjects:
Online Access:https://doi.org/10.5194/acp-23-637-2023
https://doaj.org/article/8babaa457d7d4068bac1dd5438b4d0e2
id ftdoajarticles:oai:doaj.org/article:8babaa457d7d4068bac1dd5438b4d0e2
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:8babaa457d7d4068bac1dd5438b4d0e2 2023-05-15T14:40:09+02:00 Arctic tropospheric ozone: assessment of current knowledge and model performance C. H. Whaley K. S. Law J. L. Hjorth H. Skov S. R. Arnold J. Langner J. B. Pernov G. Bergeron I. Bourgeois J. H. Christensen R.-Y. Chien M. Deushi X. Dong P. Effertz G. Faluvegi M. Flanner J. S. Fu M. Gauss G. Huey U. Im R. Kivi L. Marelle T. Onishi N. Oshima I. Petropavlovskikh J. Peischl D. A. Plummer L. Pozzoli J.-C. Raut T. Ryerson R. Skeie S. Solberg M. A. Thomas C. Thompson K. Tsigaridis S. Tsyro S. T. Turnock K. von Salzen D. W. Tarasick 2023-01-01T00:00:00Z https://doi.org/10.5194/acp-23-637-2023 https://doaj.org/article/8babaa457d7d4068bac1dd5438b4d0e2 EN eng Copernicus Publications https://acp.copernicus.org/articles/23/637/2023/acp-23-637-2023.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 doi:10.5194/acp-23-637-2023 1680-7316 1680-7324 https://doaj.org/article/8babaa457d7d4068bac1dd5438b4d0e2 Atmospheric Chemistry and Physics, Vol 23, Pp 637-661 (2023) Physics QC1-999 Chemistry QD1-999 article 2023 ftdoajarticles https://doi.org/10.5194/acp-23-637-2023 2023-01-22T01:40:55Z As the third most important greenhouse gas (GHG) after carbon dioxide (CO 2 ) and methane ( CH 4 ), tropospheric ozone (O 3 ) is also an air pollutant causing damage to human health and ecosystems. This study brings together recent research on observations and modeling of tropospheric O 3 in the Arctic, a rapidly warming and sensitive environment. At different locations in the Arctic, the observed surface O 3 seasonal cycles are quite different. Coastal Arctic locations, for example, have a minimum in the springtime due to O 3 depletion events resulting from surface bromine chemistry. In contrast, other Arctic locations have a maximum in the spring. The 12 state-of-the-art models used in this study lack the surface halogen chemistry needed to simulate coastal Arctic surface O 3 depletion in the springtime; however, the multi-model median (MMM) has accurate seasonal cycles at non-coastal Arctic locations. There is a large amount of variability among models, which has been previously reported, and we show that there continues to be no convergence among models or improved accuracy in simulating tropospheric O 3 and its precursor species. The MMM underestimates Arctic surface O 3 by 5 % to 15 % depending on the location. The vertical distribution of tropospheric O 3 is studied from recent ozonesonde measurements and the models. The models are highly variable, simulating free-tropospheric O 3 within a range of ±50 % depending on the model and the altitude. The MMM performs best, within ±8 % for most locations and seasons. However, nearly all models overestimate O 3 near the tropopause ( ∼300 hPa or ∼8 km), likely due to ongoing issues with underestimating the altitude of the tropopause and excessive downward transport of stratospheric O 3 at high latitudes. For example, the MMM is biased high by about 20 % at Eureka. Observed and simulated O 3 precursors (CO, NO x , and reservoir PAN) are evaluated throughout the troposphere. Models underestimate wintertime CO everywhere, likely due to a combination of ... Article in Journal/Newspaper Arctic Human health Directory of Open Access Journals: DOAJ Articles Arctic Eureka ENVELOPE(-85.940,-85.940,79.990,79.990) Atmospheric Chemistry and Physics 23 1 637 661
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Physics
QC1-999
Chemistry
QD1-999
spellingShingle Physics
QC1-999
Chemistry
QD1-999
C. H. Whaley
K. S. Law
J. L. Hjorth
H. Skov
S. R. Arnold
J. Langner
J. B. Pernov
G. Bergeron
I. Bourgeois
J. H. Christensen
R.-Y. Chien
M. Deushi
X. Dong
P. Effertz
G. Faluvegi
M. Flanner
J. S. Fu
M. Gauss
G. Huey
U. Im
R. Kivi
L. Marelle
T. Onishi
N. Oshima
I. Petropavlovskikh
J. Peischl
D. A. Plummer
L. Pozzoli
J.-C. Raut
T. Ryerson
R. Skeie
S. Solberg
M. A. Thomas
C. Thompson
K. Tsigaridis
S. Tsyro
S. T. Turnock
K. von Salzen
D. W. Tarasick
Arctic tropospheric ozone: assessment of current knowledge and model performance
topic_facet Physics
QC1-999
Chemistry
QD1-999
description As the third most important greenhouse gas (GHG) after carbon dioxide (CO 2 ) and methane ( CH 4 ), tropospheric ozone (O 3 ) is also an air pollutant causing damage to human health and ecosystems. This study brings together recent research on observations and modeling of tropospheric O 3 in the Arctic, a rapidly warming and sensitive environment. At different locations in the Arctic, the observed surface O 3 seasonal cycles are quite different. Coastal Arctic locations, for example, have a minimum in the springtime due to O 3 depletion events resulting from surface bromine chemistry. In contrast, other Arctic locations have a maximum in the spring. The 12 state-of-the-art models used in this study lack the surface halogen chemistry needed to simulate coastal Arctic surface O 3 depletion in the springtime; however, the multi-model median (MMM) has accurate seasonal cycles at non-coastal Arctic locations. There is a large amount of variability among models, which has been previously reported, and we show that there continues to be no convergence among models or improved accuracy in simulating tropospheric O 3 and its precursor species. The MMM underestimates Arctic surface O 3 by 5 % to 15 % depending on the location. The vertical distribution of tropospheric O 3 is studied from recent ozonesonde measurements and the models. The models are highly variable, simulating free-tropospheric O 3 within a range of ±50 % depending on the model and the altitude. The MMM performs best, within ±8 % for most locations and seasons. However, nearly all models overestimate O 3 near the tropopause ( ∼300 hPa or ∼8 km), likely due to ongoing issues with underestimating the altitude of the tropopause and excessive downward transport of stratospheric O 3 at high latitudes. For example, the MMM is biased high by about 20 % at Eureka. Observed and simulated O 3 precursors (CO, NO x , and reservoir PAN) are evaluated throughout the troposphere. Models underestimate wintertime CO everywhere, likely due to a combination of ...
format Article in Journal/Newspaper
author C. H. Whaley
K. S. Law
J. L. Hjorth
H. Skov
S. R. Arnold
J. Langner
J. B. Pernov
G. Bergeron
I. Bourgeois
J. H. Christensen
R.-Y. Chien
M. Deushi
X. Dong
P. Effertz
G. Faluvegi
M. Flanner
J. S. Fu
M. Gauss
G. Huey
U. Im
R. Kivi
L. Marelle
T. Onishi
N. Oshima
I. Petropavlovskikh
J. Peischl
D. A. Plummer
L. Pozzoli
J.-C. Raut
T. Ryerson
R. Skeie
S. Solberg
M. A. Thomas
C. Thompson
K. Tsigaridis
S. Tsyro
S. T. Turnock
K. von Salzen
D. W. Tarasick
author_facet C. H. Whaley
K. S. Law
J. L. Hjorth
H. Skov
S. R. Arnold
J. Langner
J. B. Pernov
G. Bergeron
I. Bourgeois
J. H. Christensen
R.-Y. Chien
M. Deushi
X. Dong
P. Effertz
G. Faluvegi
M. Flanner
J. S. Fu
M. Gauss
G. Huey
U. Im
R. Kivi
L. Marelle
T. Onishi
N. Oshima
I. Petropavlovskikh
J. Peischl
D. A. Plummer
L. Pozzoli
J.-C. Raut
T. Ryerson
R. Skeie
S. Solberg
M. A. Thomas
C. Thompson
K. Tsigaridis
S. Tsyro
S. T. Turnock
K. von Salzen
D. W. Tarasick
author_sort C. H. Whaley
title Arctic tropospheric ozone: assessment of current knowledge and model performance
title_short Arctic tropospheric ozone: assessment of current knowledge and model performance
title_full Arctic tropospheric ozone: assessment of current knowledge and model performance
title_fullStr Arctic tropospheric ozone: assessment of current knowledge and model performance
title_full_unstemmed Arctic tropospheric ozone: assessment of current knowledge and model performance
title_sort arctic tropospheric ozone: assessment of current knowledge and model performance
publisher Copernicus Publications
publishDate 2023
url https://doi.org/10.5194/acp-23-637-2023
https://doaj.org/article/8babaa457d7d4068bac1dd5438b4d0e2
long_lat ENVELOPE(-85.940,-85.940,79.990,79.990)
geographic Arctic
Eureka
geographic_facet Arctic
Eureka
genre Arctic
Human health
genre_facet Arctic
Human health
op_source Atmospheric Chemistry and Physics, Vol 23, Pp 637-661 (2023)
op_relation https://acp.copernicus.org/articles/23/637/2023/acp-23-637-2023.pdf
https://doaj.org/toc/1680-7316
https://doaj.org/toc/1680-7324
doi:10.5194/acp-23-637-2023
1680-7316
1680-7324
https://doaj.org/article/8babaa457d7d4068bac1dd5438b4d0e2
op_doi https://doi.org/10.5194/acp-23-637-2023
container_title Atmospheric Chemistry and Physics
container_volume 23
container_issue 1
container_start_page 637
op_container_end_page 661
_version_ 1766312063647350784