A New Model Ice for Wave-Ice Interaction

The interaction of waves and ice is of significant relevance for engineers, oceanographers and climate scientists. In-situ measurements are costly and bear uncertainties due to unknown boundary conditions. Therefore, physical laboratory experiments in ice tanks are an important alternative to valida...

Full description

Bibliographic Details
Published in:Water
Main Authors: Franz von Bock und Polach, Marco Klein, Moritz Hartmann
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2021
Subjects:
Online Access:https://doi.org/10.3390/w13233397
https://doaj.org/article/8a9314d4a5d94f449075bd3a6f552d9f
Description
Summary:The interaction of waves and ice is of significant relevance for engineers, oceanographers and climate scientists. In-situ measurements are costly and bear uncertainties due to unknown boundary conditions. Therefore, physical laboratory experiments in ice tanks are an important alternative to validate theories or investigate particular effects of interest. Ice tanks use model ice which has down-scaled sea ice properties. This model ice in ice tanks holds disadvantages due to its low stiffness and non-linear behavior which is not in scale to sea ice, but is of particular relevance in wave-ice interactions. With decreasing stiffness steeper waves are required to reach critical stresses for ice breaking, while the non-linear, respectively non-elastic, deformation behavior is associated with high wave damping. Both are scale effects and do not allow the direct transfer of model scale test results to scenarios with sea ice. Therefore, the alternative modeling approach of Model Ice of Virtual Equivalent Thickness (MIVET) is introduced. Its performance is tested in physical experiments and compared to conventional model ice. The results show that the excessive damping of conventional model ice can be reduced successfully, while the scaling of the wave induced ice break-up still requires research and testing. In conclusion, the results obtained are considered a proof of concept of MIVET for wave-ice interaction problems.