Influence of light-absorbing particles on snow spectral irradiance profiles
Light-absorbing particles (LAPs) such as black carbon or mineral dust are some of the main drivers of snow radiative transfer. Small amounts of LAPs significantly increase snowpack absorption in the visible wavelengths where ice absorption is particularly weak, impacting the surface energy budget of...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2019
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-13-2169-2019 https://doaj.org/article/8a5775a2d1d542b69e73227d93bed56a |
_version_ | 1821727782812516352 |
---|---|
author | F. Tuzet M. Dumont L. Arnaud D. Voisin M. Lamare F. Larue J. Revuelto G. Picard |
author_facet | F. Tuzet M. Dumont L. Arnaud D. Voisin M. Lamare F. Larue J. Revuelto G. Picard |
author_sort | F. Tuzet |
collection | Directory of Open Access Journals: DOAJ Articles |
container_issue | 8 |
container_start_page | 2169 |
container_title | The Cryosphere |
container_volume | 13 |
description | Light-absorbing particles (LAPs) such as black carbon or mineral dust are some of the main drivers of snow radiative transfer. Small amounts of LAPs significantly increase snowpack absorption in the visible wavelengths where ice absorption is particularly weak, impacting the surface energy budget of snow-covered areas. However, linking measurements of LAP concentration in snow to their actual radiative impact is a challenging issue which is not fully resolved. In the present paper, we point out a new method based on spectral irradiance profile (SIP) measurements which makes it possible to identify the radiative impact of LAPs on visible light extinction in homogeneous layers of the snowpack. From this impact on light extinction it is possible to infer LAP concentrations present in each layer using radiative transfer theory. This study relies on a unique dataset composed of 26 spectral irradiance profile measurements in the wavelength range 350–950 nm with concomitant profile measurements of snow physical properties and LAP concentrations, collected in the Alps over two snow seasons in winter and spring conditions. For 55 homogeneous snow layers identified in our dataset, the concentrations retrieved from SIP measurements are compared to chemical measurements of LAP concentrations. A good correlation is observed for measured concentrations higher than 5 ng g −1 ( r 2 =0.81 ) despite a clear positive bias. The potential causes of this bias are discussed, underlining a strong sensitivity of our method to LAP optical properties and to the relationship between snow microstructure and snow optical properties used in the theory. Additional uncertainties such as artefacts in the measurement technique for SIP and chemical contents along with LAP absorption efficiency may explain part of this bias. In addition, spectral information on LAP absorption can be retrieved from SIP measurements. We show that for layers containing a unique absorber, this absorber can be identified in some cases (e.g. mineral dust vs. black ... |
format | Article in Journal/Newspaper |
genre | The Cryosphere |
genre_facet | The Cryosphere |
id | ftdoajarticles:oai:doaj.org/article:8a5775a2d1d542b69e73227d93bed56a |
institution | Open Polar |
language | English |
op_collection_id | ftdoajarticles |
op_container_end_page | 2187 |
op_doi | https://doi.org/10.5194/tc-13-2169-2019 |
op_relation | https://www.the-cryosphere.net/13/2169/2019/tc-13-2169-2019.pdf https://doaj.org/toc/1994-0416 https://doaj.org/toc/1994-0424 doi:10.5194/tc-13-2169-2019 1994-0416 1994-0424 https://doaj.org/article/8a5775a2d1d542b69e73227d93bed56a |
op_source | The Cryosphere, Vol 13, Pp 2169-2187 (2019) |
publishDate | 2019 |
publisher | Copernicus Publications |
record_format | openpolar |
spelling | ftdoajarticles:oai:doaj.org/article:8a5775a2d1d542b69e73227d93bed56a 2025-01-17T01:05:59+00:00 Influence of light-absorbing particles on snow spectral irradiance profiles F. Tuzet M. Dumont L. Arnaud D. Voisin M. Lamare F. Larue J. Revuelto G. Picard 2019-08-01T00:00:00Z https://doi.org/10.5194/tc-13-2169-2019 https://doaj.org/article/8a5775a2d1d542b69e73227d93bed56a EN eng Copernicus Publications https://www.the-cryosphere.net/13/2169/2019/tc-13-2169-2019.pdf https://doaj.org/toc/1994-0416 https://doaj.org/toc/1994-0424 doi:10.5194/tc-13-2169-2019 1994-0416 1994-0424 https://doaj.org/article/8a5775a2d1d542b69e73227d93bed56a The Cryosphere, Vol 13, Pp 2169-2187 (2019) Environmental sciences GE1-350 Geology QE1-996.5 article 2019 ftdoajarticles https://doi.org/10.5194/tc-13-2169-2019 2022-12-31T14:55:07Z Light-absorbing particles (LAPs) such as black carbon or mineral dust are some of the main drivers of snow radiative transfer. Small amounts of LAPs significantly increase snowpack absorption in the visible wavelengths where ice absorption is particularly weak, impacting the surface energy budget of snow-covered areas. However, linking measurements of LAP concentration in snow to their actual radiative impact is a challenging issue which is not fully resolved. In the present paper, we point out a new method based on spectral irradiance profile (SIP) measurements which makes it possible to identify the radiative impact of LAPs on visible light extinction in homogeneous layers of the snowpack. From this impact on light extinction it is possible to infer LAP concentrations present in each layer using radiative transfer theory. This study relies on a unique dataset composed of 26 spectral irradiance profile measurements in the wavelength range 350–950 nm with concomitant profile measurements of snow physical properties and LAP concentrations, collected in the Alps over two snow seasons in winter and spring conditions. For 55 homogeneous snow layers identified in our dataset, the concentrations retrieved from SIP measurements are compared to chemical measurements of LAP concentrations. A good correlation is observed for measured concentrations higher than 5 ng g −1 ( r 2 =0.81 ) despite a clear positive bias. The potential causes of this bias are discussed, underlining a strong sensitivity of our method to LAP optical properties and to the relationship between snow microstructure and snow optical properties used in the theory. Additional uncertainties such as artefacts in the measurement technique for SIP and chemical contents along with LAP absorption efficiency may explain part of this bias. In addition, spectral information on LAP absorption can be retrieved from SIP measurements. We show that for layers containing a unique absorber, this absorber can be identified in some cases (e.g. mineral dust vs. black ... Article in Journal/Newspaper The Cryosphere Directory of Open Access Journals: DOAJ Articles The Cryosphere 13 8 2169 2187 |
spellingShingle | Environmental sciences GE1-350 Geology QE1-996.5 F. Tuzet M. Dumont L. Arnaud D. Voisin M. Lamare F. Larue J. Revuelto G. Picard Influence of light-absorbing particles on snow spectral irradiance profiles |
title | Influence of light-absorbing particles on snow spectral irradiance profiles |
title_full | Influence of light-absorbing particles on snow spectral irradiance profiles |
title_fullStr | Influence of light-absorbing particles on snow spectral irradiance profiles |
title_full_unstemmed | Influence of light-absorbing particles on snow spectral irradiance profiles |
title_short | Influence of light-absorbing particles on snow spectral irradiance profiles |
title_sort | influence of light-absorbing particles on snow spectral irradiance profiles |
topic | Environmental sciences GE1-350 Geology QE1-996.5 |
topic_facet | Environmental sciences GE1-350 Geology QE1-996.5 |
url | https://doi.org/10.5194/tc-13-2169-2019 https://doaj.org/article/8a5775a2d1d542b69e73227d93bed56a |