Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti.
The Aedes aegypti mosquito is a significant public health threat, as it is the main vector of dengue and chikungunya viruses. Disease control efforts could be enhanced through reproductive manipulation of these vectors. Previous work has revealed a relationship between male seminal fluid proteins tr...
Published in: | PLOS Neglected Tropical Diseases |
---|---|
Main Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016
|
Subjects: | |
Online Access: | https://doi.org/10.1371/journal.pntd.0004451 https://doaj.org/article/7b17511d35414d1d89aa0a8ccee4a789 |
id |
ftdoajarticles:oai:doaj.org/article:7b17511d35414d1d89aa0a8ccee4a789 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:7b17511d35414d1d89aa0a8ccee4a789 2023-05-15T15:16:22+02:00 Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. Catalina Alfonso-Parra Yasir H Ahmed-Braimah Ethan C Degner Frank W Avila Susan M Villarreal Jeffrey A Pleiss Mariana F Wolfner Laura C Harrington 2016-02-01T00:00:00Z https://doi.org/10.1371/journal.pntd.0004451 https://doaj.org/article/7b17511d35414d1d89aa0a8ccee4a789 EN eng Public Library of Science (PLoS) http://europepmc.org/articles/PMC4764262?pdf=render https://doaj.org/toc/1935-2727 https://doaj.org/toc/1935-2735 1935-2727 1935-2735 doi:10.1371/journal.pntd.0004451 https://doaj.org/article/7b17511d35414d1d89aa0a8ccee4a789 PLoS Neglected Tropical Diseases, Vol 10, Iss 2, p e0004451 (2016) Arctic medicine. Tropical medicine RC955-962 Public aspects of medicine RA1-1270 article 2016 ftdoajarticles https://doi.org/10.1371/journal.pntd.0004451 2022-12-31T04:12:31Z The Aedes aegypti mosquito is a significant public health threat, as it is the main vector of dengue and chikungunya viruses. Disease control efforts could be enhanced through reproductive manipulation of these vectors. Previous work has revealed a relationship between male seminal fluid proteins transferred to females during mating and female post-mating physiology and behavior. To better understand this interplay, we used short-read RNA sequencing to identify gene expression changes in the lower reproductive tract of females in response to mating. We characterized mRNA expression in virgin and mated females at 0, 6 and 24 hours post-mating (hpm) and identified 364 differentially abundant transcripts between mating status groups. Surprisingly, 60 transcripts were more abundant at 0 hpm compared to virgin females, suggesting transfer from males. Twenty of these encode known Ae. aegypti seminal fluid proteins. Transfer and detection of male accessory gland-derived mRNA in females at 0 hpm was confirmed by measurement of eGFP mRNA in females mated to eGFP-expressing males. In addition, 150 transcripts were up-regulated at 6 hpm and 24 hpm, while 130 transcripts were down-regulated at 6 hpm and 24 hpm. Gene Ontology (GO) enrichment analysis revealed that proteases, a protein class broadly known to play important roles in reproduction, were among the most enriched protein classes. RNAs associated with immune system and antimicrobial function were also up-regulated at 24 hpm. Collectively, our results suggest that copulation initiates broad transcriptome changes across the mosquito female reproductive tract, "priming" her for important subsequent processes of blood feeding, egg development and immune defense. Our transcriptome analysis provides a vital foundation for future studies of the consequences of mating on female biology and will aid studies seeking to identify specific gene families, molecules and pathways that support key reproductive processes in the female mosquito. Article in Journal/Newspaper Arctic Directory of Open Access Journals: DOAJ Articles Arctic PLOS Neglected Tropical Diseases 10 2 e0004451 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Arctic medicine. Tropical medicine RC955-962 Public aspects of medicine RA1-1270 |
spellingShingle |
Arctic medicine. Tropical medicine RC955-962 Public aspects of medicine RA1-1270 Catalina Alfonso-Parra Yasir H Ahmed-Braimah Ethan C Degner Frank W Avila Susan M Villarreal Jeffrey A Pleiss Mariana F Wolfner Laura C Harrington Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. |
topic_facet |
Arctic medicine. Tropical medicine RC955-962 Public aspects of medicine RA1-1270 |
description |
The Aedes aegypti mosquito is a significant public health threat, as it is the main vector of dengue and chikungunya viruses. Disease control efforts could be enhanced through reproductive manipulation of these vectors. Previous work has revealed a relationship between male seminal fluid proteins transferred to females during mating and female post-mating physiology and behavior. To better understand this interplay, we used short-read RNA sequencing to identify gene expression changes in the lower reproductive tract of females in response to mating. We characterized mRNA expression in virgin and mated females at 0, 6 and 24 hours post-mating (hpm) and identified 364 differentially abundant transcripts between mating status groups. Surprisingly, 60 transcripts were more abundant at 0 hpm compared to virgin females, suggesting transfer from males. Twenty of these encode known Ae. aegypti seminal fluid proteins. Transfer and detection of male accessory gland-derived mRNA in females at 0 hpm was confirmed by measurement of eGFP mRNA in females mated to eGFP-expressing males. In addition, 150 transcripts were up-regulated at 6 hpm and 24 hpm, while 130 transcripts were down-regulated at 6 hpm and 24 hpm. Gene Ontology (GO) enrichment analysis revealed that proteases, a protein class broadly known to play important roles in reproduction, were among the most enriched protein classes. RNAs associated with immune system and antimicrobial function were also up-regulated at 24 hpm. Collectively, our results suggest that copulation initiates broad transcriptome changes across the mosquito female reproductive tract, "priming" her for important subsequent processes of blood feeding, egg development and immune defense. Our transcriptome analysis provides a vital foundation for future studies of the consequences of mating on female biology and will aid studies seeking to identify specific gene families, molecules and pathways that support key reproductive processes in the female mosquito. |
format |
Article in Journal/Newspaper |
author |
Catalina Alfonso-Parra Yasir H Ahmed-Braimah Ethan C Degner Frank W Avila Susan M Villarreal Jeffrey A Pleiss Mariana F Wolfner Laura C Harrington |
author_facet |
Catalina Alfonso-Parra Yasir H Ahmed-Braimah Ethan C Degner Frank W Avila Susan M Villarreal Jeffrey A Pleiss Mariana F Wolfner Laura C Harrington |
author_sort |
Catalina Alfonso-Parra |
title |
Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. |
title_short |
Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. |
title_full |
Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. |
title_fullStr |
Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. |
title_full_unstemmed |
Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. |
title_sort |
mating-induced transcriptome changes in the reproductive tract of female aedes aegypti. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2016 |
url |
https://doi.org/10.1371/journal.pntd.0004451 https://doaj.org/article/7b17511d35414d1d89aa0a8ccee4a789 |
geographic |
Arctic |
geographic_facet |
Arctic |
genre |
Arctic |
genre_facet |
Arctic |
op_source |
PLoS Neglected Tropical Diseases, Vol 10, Iss 2, p e0004451 (2016) |
op_relation |
http://europepmc.org/articles/PMC4764262?pdf=render https://doaj.org/toc/1935-2727 https://doaj.org/toc/1935-2735 1935-2727 1935-2735 doi:10.1371/journal.pntd.0004451 https://doaj.org/article/7b17511d35414d1d89aa0a8ccee4a789 |
op_doi |
https://doi.org/10.1371/journal.pntd.0004451 |
container_title |
PLOS Neglected Tropical Diseases |
container_volume |
10 |
container_issue |
2 |
container_start_page |
e0004451 |
_version_ |
1766346648275910656 |