Micromorphological Characteristics of Fallow, Pyrogenic, Arable Soils of Central Part of Yakutia

The assessment of the micromorphological characteristics of soils is a powerful tool for studying the transformation of soils under the influence of various weathering mechanisms (physical, biogenic). The central part of Yakutia is characterized by a large area of agricultural lands, some of which h...

Full description

Bibliographic Details
Published in:Soil Systems
Main Authors: Vyacheslav Polyakov, Alexey Petrov, Evgeny Abakumov
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2022
Subjects:
Online Access:https://doi.org/10.3390/soilsystems6030068
https://doaj.org/article/771f7f16c895466993e912f3abea28fc
Description
Summary:The assessment of the micromorphological characteristics of soils is a powerful tool for studying the transformation of soils under the influence of various weathering mechanisms (physical, biogenic). The central part of Yakutia is characterized by a large area of agricultural lands, some of which has become fallow land and is subject to cryogenic processes, fires and anthropogenic impact. Under the conditions of climate change, the fallow soils of Yakutia can be re-involved in the agricultural complex. To study their state, a method of micromorphological investigation of thin soil sections is proposed. Thin sections of soils were analyzed using a polarizing microscope Leica DM750P. As a result of the work, zonal, fallow, pyrogenic and agricultural soils of the central part of Yakutia were analyzed. The soils were found to be in a degraded state. Zonal soils were characterized by the presence of quartz grains, feldspar, and undecomposed plant tissue, as well as biogenically transformed humus. Fallow soils were characterized by a thick organo-mineral (A) horizon, quartz grains, feldspar, and silty-clay plasma. Pyrogenic soils have differences from natural and fallow soils; as a result of fires and active illuviation of organo-mineral substances. The Anthrosol soils were characterized by a large number of aggregates of various sizes. In their composition there were various minerals, such as quartz, feldspar and mica. The signs of soil cryogenesis were noted only in the underlying horizons (B), while the upper horizon (A) had no signs of cryogenic transformation.