The [simple carbon project] model v1.0
We construct a carbon cycle box model to process observed or inferred geochemical evidence from modern and paleo settings. The [simple carbon project] model v1.0 (SCP-M) combines a modern understanding of the ocean circulation regime with the Earth's carbon cycle. SCP-M estimates the concentrat...
Published in: | Geoscientific Model Development |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2019
|
Subjects: | |
Online Access: | https://doi.org/10.5194/gmd-12-1541-2019 https://doaj.org/article/7699bedc135d4cf88a177c320a253f93 |
id |
ftdoajarticles:oai:doaj.org/article:7699bedc135d4cf88a177c320a253f93 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:7699bedc135d4cf88a177c320a253f93 2023-05-15T18:18:52+02:00 The [simple carbon project] model v1.0 C. M. O'Neill A. McC. Hogg M. J. Ellwood S. M. Eggins B. N. Opdyke 2019-04-01T00:00:00Z https://doi.org/10.5194/gmd-12-1541-2019 https://doaj.org/article/7699bedc135d4cf88a177c320a253f93 EN eng Copernicus Publications https://www.geosci-model-dev.net/12/1541/2019/gmd-12-1541-2019.pdf https://doaj.org/toc/1991-959X https://doaj.org/toc/1991-9603 doi:10.5194/gmd-12-1541-2019 1991-959X 1991-9603 https://doaj.org/article/7699bedc135d4cf88a177c320a253f93 Geoscientific Model Development, Vol 12, Pp 1541-1572 (2019) Geology QE1-996.5 article 2019 ftdoajarticles https://doi.org/10.5194/gmd-12-1541-2019 2022-12-31T15:02:43Z We construct a carbon cycle box model to process observed or inferred geochemical evidence from modern and paleo settings. The [simple carbon project] model v1.0 (SCP-M) combines a modern understanding of the ocean circulation regime with the Earth's carbon cycle. SCP-M estimates the concentrations of a range of elements within the carbon cycle by simulating ocean circulation, biological, chemical, atmospheric and terrestrial carbon cycle processes. The model is capable of reproducing both paleo and modern observations and aligns with CMIP5 model projections. SCP-M's fast run time, simplified layout and matrix structure render it a flexible and easy-to-use tool for paleo and modern carbon cycle simulations. The ease of data integration also enables model–data optimisations. Limitations of the model include the prescription of many fluxes and an ocean-basin-averaged topology, which may not be applicable to more detailed simulations. In this paper we demonstrate SCP-M's application primarily with an analysis of the carbon cycle transition from the Last Glacial Maximum (LGM) to the Holocene and also with the modern carbon cycle under the influence of anthropogenic CO 2 emissions. We conduct an atmospheric and ocean multi-proxy model–data parameter optimisation for the LGM and late Holocene periods using the growing pool of published paleo atmosphere and ocean data for CO 2 , δ 13 C , Δ 14 C and the carbonate ion proxy. The results provide strong evidence for an ocean-wide physical mechanism to deliver the LGM-to-Holocene carbon cycle transition. Alongside ancillary changes in ocean temperature, volume, salinity, sea-ice cover and atmospheric radiocarbon production rate, changes in global overturning circulation and, to a lesser extent, Atlantic meridional overturning circulation can drive the observed LGM and late Holocene signals in atmospheric CO 2 , δ 13 C , Δ 14 C , and the oceanic distribution of δ 13 C , Δ 14 C and the carbonate ion proxy. Further work is needed on the analysis and processing of ocean proxy ... Article in Journal/Newspaper Sea ice Directory of Open Access Journals: DOAJ Articles Geoscientific Model Development 12 4 1541 1572 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Geology QE1-996.5 |
spellingShingle |
Geology QE1-996.5 C. M. O'Neill A. McC. Hogg M. J. Ellwood S. M. Eggins B. N. Opdyke The [simple carbon project] model v1.0 |
topic_facet |
Geology QE1-996.5 |
description |
We construct a carbon cycle box model to process observed or inferred geochemical evidence from modern and paleo settings. The [simple carbon project] model v1.0 (SCP-M) combines a modern understanding of the ocean circulation regime with the Earth's carbon cycle. SCP-M estimates the concentrations of a range of elements within the carbon cycle by simulating ocean circulation, biological, chemical, atmospheric and terrestrial carbon cycle processes. The model is capable of reproducing both paleo and modern observations and aligns with CMIP5 model projections. SCP-M's fast run time, simplified layout and matrix structure render it a flexible and easy-to-use tool for paleo and modern carbon cycle simulations. The ease of data integration also enables model–data optimisations. Limitations of the model include the prescription of many fluxes and an ocean-basin-averaged topology, which may not be applicable to more detailed simulations. In this paper we demonstrate SCP-M's application primarily with an analysis of the carbon cycle transition from the Last Glacial Maximum (LGM) to the Holocene and also with the modern carbon cycle under the influence of anthropogenic CO 2 emissions. We conduct an atmospheric and ocean multi-proxy model–data parameter optimisation for the LGM and late Holocene periods using the growing pool of published paleo atmosphere and ocean data for CO 2 , δ 13 C , Δ 14 C and the carbonate ion proxy. The results provide strong evidence for an ocean-wide physical mechanism to deliver the LGM-to-Holocene carbon cycle transition. Alongside ancillary changes in ocean temperature, volume, salinity, sea-ice cover and atmospheric radiocarbon production rate, changes in global overturning circulation and, to a lesser extent, Atlantic meridional overturning circulation can drive the observed LGM and late Holocene signals in atmospheric CO 2 , δ 13 C , Δ 14 C , and the oceanic distribution of δ 13 C , Δ 14 C and the carbonate ion proxy. Further work is needed on the analysis and processing of ocean proxy ... |
format |
Article in Journal/Newspaper |
author |
C. M. O'Neill A. McC. Hogg M. J. Ellwood S. M. Eggins B. N. Opdyke |
author_facet |
C. M. O'Neill A. McC. Hogg M. J. Ellwood S. M. Eggins B. N. Opdyke |
author_sort |
C. M. O'Neill |
title |
The [simple carbon project] model v1.0 |
title_short |
The [simple carbon project] model v1.0 |
title_full |
The [simple carbon project] model v1.0 |
title_fullStr |
The [simple carbon project] model v1.0 |
title_full_unstemmed |
The [simple carbon project] model v1.0 |
title_sort |
[simple carbon project] model v1.0 |
publisher |
Copernicus Publications |
publishDate |
2019 |
url |
https://doi.org/10.5194/gmd-12-1541-2019 https://doaj.org/article/7699bedc135d4cf88a177c320a253f93 |
genre |
Sea ice |
genre_facet |
Sea ice |
op_source |
Geoscientific Model Development, Vol 12, Pp 1541-1572 (2019) |
op_relation |
https://www.geosci-model-dev.net/12/1541/2019/gmd-12-1541-2019.pdf https://doaj.org/toc/1991-959X https://doaj.org/toc/1991-9603 doi:10.5194/gmd-12-1541-2019 1991-959X 1991-9603 https://doaj.org/article/7699bedc135d4cf88a177c320a253f93 |
op_doi |
https://doi.org/10.5194/gmd-12-1541-2019 |
container_title |
Geoscientific Model Development |
container_volume |
12 |
container_issue |
4 |
container_start_page |
1541 |
op_container_end_page |
1572 |
_version_ |
1766195611444445184 |