Molecular approaches to deploy singlet oxygen in a Leishmania model as an unassailable biocide for disease mitigation and vector control
Singlet oxygen (1O2) is a potent biocide potentially deployable for integrated control of tropical diseases and their insect vectors. This very short-lived free radical is highly destructive of cellular molecules when generated intracellularly. Most organisms, including parasites and vectors, are de...
Published in: | Frontiers in Tropical Diseases |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Frontiers Media S.A.
2024
|
Subjects: | |
Online Access: | https://doi.org/10.3389/fitd.2024.1306429 https://doaj.org/article/726aab878a2a450e8804e49a89feff16 |
id |
ftdoajarticles:oai:doaj.org/article:726aab878a2a450e8804e49a89feff16 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:726aab878a2a450e8804e49a89feff16 2024-09-09T19:28:12+00:00 Molecular approaches to deploy singlet oxygen in a Leishmania model as an unassailable biocide for disease mitigation and vector control Kwang Poo Chang Joseph M. Reynolds Dennis K. P. Ng Yun-Hung Tu Chia-Kwung Fan Shin-Hong Shiao 2024-05-01T00:00:00Z https://doi.org/10.3389/fitd.2024.1306429 https://doaj.org/article/726aab878a2a450e8804e49a89feff16 EN eng Frontiers Media S.A. https://www.frontiersin.org/articles/10.3389/fitd.2024.1306429/full https://doaj.org/toc/2673-7515 2673-7515 doi:10.3389/fitd.2024.1306429 https://doaj.org/article/726aab878a2a450e8804e49a89feff16 Frontiers in Tropical Diseases, Vol 5 (2024) singlet oxygen porphyrin phthalocyanine light-activation transgenic Leishmania Arctic medicine. Tropical medicine RC955-962 article 2024 ftdoajarticles https://doi.org/10.3389/fitd.2024.1306429 2024-08-05T17:49:26Z Singlet oxygen (1O2) is a potent biocide potentially deployable for integrated control of tropical diseases and their insect vectors. This very short-lived free radical is highly destructive of cellular molecules when generated intracellularly. Most organisms, including parasites and vectors, are defenseless against 1O2 except for plants, which produce it abundantly during photosynthesis, hence, the acquisition of specific mechanisms for its detoxification. In the presence of O2 under physiological conditions, certain dyes or photosensitizers (PS), e.g., porphyrins and phthalocyanines (PC), are excitable by light to produce biocidal 1O2. Its half-life is in the order of microseconds, necessitating its intracellular generation in order to harness its biocidal activity most effectively. This is achievable by loading cells with PS for excitation with light to produce 1O2in situ. One example to achieve this is the genetic engineering of Leishmania to complement its inherent defects in porphyrin biosynthesis, resulting in cytosolic accumulation of abundant PS in the form of uroporphyrin 1 (URO). Another example is the chemical engineering of PC for hydrophilicity, thereby facilitating the endocytosis of such PS by cells. Leishmania loaded with cytosolic URO and endosomal PC are inactivated by the 1O2 produced via light-activation of these PS in the two different cell compartments. The inactivated Leishmania are nonviable, but have their natural vaccines and adjuvants well-preserved for prophylactic vaccination against experimental leishmaniasis. 1O2-inactivated Leishmania is potentially useful to serve as a platform for the safe and effective delivery of transgenically add-on vaccines against malignant and viral diseases in experimental models. Hydrophilic and cationic PC were also shown experimentally to act as a new type of dim light-activable insecticides, i.e., their mosquito larvicidal activities with <µM LD50 values. Similar results are expected by studying PC in additional laboratory insect models. A ... Article in Journal/Newspaper Arctic Directory of Open Access Journals: DOAJ Articles Arctic Frontiers in Tropical Diseases 5 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
singlet oxygen porphyrin phthalocyanine light-activation transgenic Leishmania Arctic medicine. Tropical medicine RC955-962 |
spellingShingle |
singlet oxygen porphyrin phthalocyanine light-activation transgenic Leishmania Arctic medicine. Tropical medicine RC955-962 Kwang Poo Chang Joseph M. Reynolds Dennis K. P. Ng Yun-Hung Tu Chia-Kwung Fan Shin-Hong Shiao Molecular approaches to deploy singlet oxygen in a Leishmania model as an unassailable biocide for disease mitigation and vector control |
topic_facet |
singlet oxygen porphyrin phthalocyanine light-activation transgenic Leishmania Arctic medicine. Tropical medicine RC955-962 |
description |
Singlet oxygen (1O2) is a potent biocide potentially deployable for integrated control of tropical diseases and their insect vectors. This very short-lived free radical is highly destructive of cellular molecules when generated intracellularly. Most organisms, including parasites and vectors, are defenseless against 1O2 except for plants, which produce it abundantly during photosynthesis, hence, the acquisition of specific mechanisms for its detoxification. In the presence of O2 under physiological conditions, certain dyes or photosensitizers (PS), e.g., porphyrins and phthalocyanines (PC), are excitable by light to produce biocidal 1O2. Its half-life is in the order of microseconds, necessitating its intracellular generation in order to harness its biocidal activity most effectively. This is achievable by loading cells with PS for excitation with light to produce 1O2in situ. One example to achieve this is the genetic engineering of Leishmania to complement its inherent defects in porphyrin biosynthesis, resulting in cytosolic accumulation of abundant PS in the form of uroporphyrin 1 (URO). Another example is the chemical engineering of PC for hydrophilicity, thereby facilitating the endocytosis of such PS by cells. Leishmania loaded with cytosolic URO and endosomal PC are inactivated by the 1O2 produced via light-activation of these PS in the two different cell compartments. The inactivated Leishmania are nonviable, but have their natural vaccines and adjuvants well-preserved for prophylactic vaccination against experimental leishmaniasis. 1O2-inactivated Leishmania is potentially useful to serve as a platform for the safe and effective delivery of transgenically add-on vaccines against malignant and viral diseases in experimental models. Hydrophilic and cationic PC were also shown experimentally to act as a new type of dim light-activable insecticides, i.e., their mosquito larvicidal activities with <µM LD50 values. Similar results are expected by studying PC in additional laboratory insect models. A ... |
format |
Article in Journal/Newspaper |
author |
Kwang Poo Chang Joseph M. Reynolds Dennis K. P. Ng Yun-Hung Tu Chia-Kwung Fan Shin-Hong Shiao |
author_facet |
Kwang Poo Chang Joseph M. Reynolds Dennis K. P. Ng Yun-Hung Tu Chia-Kwung Fan Shin-Hong Shiao |
author_sort |
Kwang Poo Chang |
title |
Molecular approaches to deploy singlet oxygen in a Leishmania model as an unassailable biocide for disease mitigation and vector control |
title_short |
Molecular approaches to deploy singlet oxygen in a Leishmania model as an unassailable biocide for disease mitigation and vector control |
title_full |
Molecular approaches to deploy singlet oxygen in a Leishmania model as an unassailable biocide for disease mitigation and vector control |
title_fullStr |
Molecular approaches to deploy singlet oxygen in a Leishmania model as an unassailable biocide for disease mitigation and vector control |
title_full_unstemmed |
Molecular approaches to deploy singlet oxygen in a Leishmania model as an unassailable biocide for disease mitigation and vector control |
title_sort |
molecular approaches to deploy singlet oxygen in a leishmania model as an unassailable biocide for disease mitigation and vector control |
publisher |
Frontiers Media S.A. |
publishDate |
2024 |
url |
https://doi.org/10.3389/fitd.2024.1306429 https://doaj.org/article/726aab878a2a450e8804e49a89feff16 |
geographic |
Arctic |
geographic_facet |
Arctic |
genre |
Arctic |
genre_facet |
Arctic |
op_source |
Frontiers in Tropical Diseases, Vol 5 (2024) |
op_relation |
https://www.frontiersin.org/articles/10.3389/fitd.2024.1306429/full https://doaj.org/toc/2673-7515 2673-7515 doi:10.3389/fitd.2024.1306429 https://doaj.org/article/726aab878a2a450e8804e49a89feff16 |
op_doi |
https://doi.org/10.3389/fitd.2024.1306429 |
container_title |
Frontiers in Tropical Diseases |
container_volume |
5 |
_version_ |
1809897476054843392 |