Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef

Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ r...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: R. Albright, C. Langdon, K. R. N. Anthony
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2013
Subjects:
Online Access:https://doi.org/10.5194/bg-10-6747-2013
https://doaj.org/article/71b25b53995c4023823d53c7a772ac7d
Description
Summary:Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate diel and seasonal trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec) and net community production (ncp). Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal cycles. pH (total scale) ranged from 7.92 to 8.17, p CO 2 ranged from 272 to 542 μatm, and aragonite saturation state (Ω arag ) ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in p CO 2 and pH, respectively. Daytime ncp averaged 37 ± 19 mmol C m −2 h −1 in summer and 33 ± 13 mmol C m −2 h −1 in winter; nighttime ncp averaged −30 ± 25 and −7 ± 6 mmol C m −2 h −1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO 3 m −2 h −1 in summer and 8 ± 3 mmol CaCO 3 m −2 h −1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and −1 ± 3 mmol CaCO 3 m −2 h −1 in summer and winter, respectively. Net ecosystem calcification was highly sensitive to changes in Ω arag for both seasons, indicating that relatively small shifts in Ω arag may drive measurable shifts in calcification rates, and hence carbon budgets, of coral reefs throughout the year.