Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign

Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO 2 =...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: J. Savarino, W. C. Vicars, M. Legrand, S. Preunkert, B. Jourdain, M. M. Frey, A. Kukui, N. Caillon, J. Gil Roca
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2016
Subjects:
Online Access:https://doi.org/10.5194/acp-16-2659-2016
https://doaj.org/article/70a8927a92534676b4f317eaf96d913e
Description
Summary:Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO 2 = NO x ). The unique and distinctive 17 O excess (Δ 17 O = δ 17 O − 0.52 × δ 18 O) of ozone, which is transferred to NO x via oxidation, is a particularly useful isotopic fingerprint in studies of NO x transformations. Constraining the propagation of 17 O excess within the NO x cycle is critical in polar areas, where there exists the possibility of extending atmospheric investigations to the glacial–interglacial timescale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C (East Antarctic Plateau) during the austral summer of 2011/2012. Nitrate isotope analysis has been here combined for the first time with key precursors involved in nitrate production (NO x , O 3 , OH, HO 2 , RO 2 , etc.) and direct observations of the transferrable Δ 17 O of surface ozone, which was measured at Dome C throughout 2012 using our recently developed analytical approach. Assuming that nitrate is mainly produced in Antarctica in summer through the OH + NO 2 pathway and using concurrent measurements of OH and NO 2 , we calculated a Δ 17 O signature for nitrate on the order of (21–22 ± 3) ‰. These values are lower than the measured values that ranged between 27 and 31 ‰. This discrepancy between expected and observed Δ 17 O(NO 3 − ) values suggests the existence of an unknown process that contributes significantly to the atmospheric nitrate budget over this East Antarctic region. However, systematic errors or false isotopic balance transfer functions are not totally excluded.