Diagnostic performance of attenuated total reflection Fourier-transform infrared spectroscopy for detecting COVID-19 from routine nasopharyngeal swab samples

Abstract Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy coupled with machine learning-based partial least squares discriminant analysis (PLS-DA) was applied to study if severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be detected from nasopharyngeal...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Helinä Heino, Lassi Rieppo, Tuija Männistö, Mikko J. Sillanpää, Vesa Mäntynen, Simo Saarakkala
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2022
Subjects:
R
Q
Online Access:https://doi.org/10.1038/s41598-022-24751-z
https://doaj.org/article/6e68ae891de04775b6b88533166de8b9
Description
Summary:Abstract Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy coupled with machine learning-based partial least squares discriminant analysis (PLS-DA) was applied to study if severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be detected from nasopharyngeal swab samples originally collected for polymerase chain reaction (PCR) analysis. Our retrospective study included 558 positive and 558 negative samples collected from Northern Finland. Overall, we found moderate diagnostic performance for ATR-FTIR when PCR analysis was used as the gold standard: the average area under the receiver operating characteristics curve (AUROC) was 0.67–0.68 (min. 0.65, max. 0.69) with 20, 10 and 5 k-fold cross validations. Mean accuracy, sensitivity and specificity was 0.62–0.63 (min. 0.60, max. 0.65), 0.61 (min. 0.58, max. 0.65) and 0.64 (min. 0.59, max. 0.67) with 20, 10 and 5 k-fold cross validations. As a conclusion, our study with relatively large sample set clearly indicate that measured ATR-FTIR spectrum contains specific information for SARS-CoV-2 infection (P < 0.001 for AUROC in label permutation test). However, the diagnostic performance of ATR-FTIR remained only moderate, potentially due to low concentration of viral particles in the transport medium. Further studies are needed before ATR-FTIR can be recommended for fast screening of SARS-CoV-2 from nasopharyngeal swab samples.