Yew (Taxus) intoxication in free-ranging cervids.

Wild ruminants, including deer species (cervids) have incorrectly been regarded as refractory to yew (Taxus) intoxication. This assumption has been based upon anecdotal observations of individual deer browsing on yew over time without apparent adverse effect. A single case of yew intoxication was re...

Full description

Bibliographic Details
Published in:PLOS ONE
Main Authors: Kjell Handeland, Turid Vikøren, Terje D Josefsen, Knut Madslien, Belinda Valdecanas, Silvio Uhlig
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2017
Subjects:
R
Q
Online Access:https://doi.org/10.1371/journal.pone.0188961
https://doaj.org/article/6b6fca792f52426cbde14c24c65ee07e
Description
Summary:Wild ruminants, including deer species (cervids) have incorrectly been regarded as refractory to yew (Taxus) intoxication. This assumption has been based upon anecdotal observations of individual deer browsing on yew over time without apparent adverse effect. A single case of yew intoxication was reported in a free-ranging Norwegian moose (Alces alces) in 2008. The current report describes five additional cases of yew toxicosis in moose, seven in roe deer (Capreolus capreolus) and two in reindeer (Rangifer tarandus tarandus), all in Norway. The animals were found dead during the winter, close to or within gardens containing yew plants showing signs of browsing. Gross findings included lung congestion and edema, thoracic and pericardial effusion, bilateral heart dilatation, epi- and endocardial hemorrhage, and enlarged (congested) spleen. Yew plant remnants were detected in the rumen of all animals with the exception of a single moose. Histology revealed multifocal acute myocardial degeneration and necrosis with hemorrhage in roe deer, but not in the two other species. A qualitative high performance liquid chromatography-ion trap mass spectrometry analysis was used to tentatively identify five major Taxus alkaloids (taxines) in crude yew extracts and in heart and liver samples from the moose cases. All five major taxines were detected with good signal/noise ratio in tissue samples from the four moose with visible ruminal yew content, whereas lower levels of taxines were detected in the moose without visible ruminal yew content. Possible differences in interspecies tolerance to taxines and role of individual protective adaptation are discussed.