Reconstruction of the Surface Inshore Labrador Current from SWOT Sea Surface Height Measurements

Utilizing a high-resolution (2-km) coastal ocean model output off Eastern Newfoundland, this paper explores the potential for reconstructing the sea surface height (SSH) and the surface inshore Labrador Current from high-resolution SSH data of the upcoming Surface Water and Ocean Topography (SWOT) s...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Zhimin Ma, Guoqi Han
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2019
Subjects:
Q
Online Access:https://doi.org/10.3390/rs11111264
https://doaj.org/article/6ac06810df2c453f84c73103290b8666
Description
Summary:Utilizing a high-resolution (2-km) coastal ocean model output off Eastern Newfoundland, this paper explores the potential for reconstructing the sea surface height (SSH) and the surface inshore Labrador Current from high-resolution SSH data of the upcoming Surface Water and Ocean Topography (SWOT) satellite mission. The model results are evaluated against in-situ data from tide gauges and nadir altimetry for the period from June to October, 2010. The hourly model SSH output is used as true SSH and sampled along-swath with expected measurement errors by using a SWOT simulator, which produces SWOT-like data. We reconstruct half-day SSH fields from the SWOT-like data using optimal interpolation and average them into weekly fields. The average normalized root-mean-square difference between the weekly reconstructed SSH field and the model SSH filed is 0.07 for the inshore Labrador Current. Between the geostrophic surface current derived from the reconstructed SSH field and the model surface current, the average normalized root-mean-square difference is 0.26 for the inshore Labrador Current. For the surface unit-depth transport of the inshore Labrador Current, the normalized root-mean-square differences are 0.32−0.38 between the reconstructed current and the model current.