A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta

Abstract Background Plasmodium vivax can cause severe malaria. The total parasite biomass during infections is correlated with the severity of disease but not necessarily quantified accurately by microscopy. This finding has raised the question whether there could be sub-populations of parasites tha...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Luis L. Fonseca, Chester J. Joyner, MaHPIC Consortium, Mary R. Galinski, Eberhard O. Voit
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2017
Subjects:
Online Access:https://doi.org/10.1186/s12936-017-2008-4
https://doaj.org/article/6a03934881ed4ede9c308189109782b3
id ftdoajarticles:oai:doaj.org/article:6a03934881ed4ede9c308189109782b3
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:6a03934881ed4ede9c308189109782b3 2023-05-15T15:16:09+02:00 A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta Luis L. Fonseca Chester J. Joyner MaHPIC Consortium Mary R. Galinski Eberhard O. Voit 2017-09-01T00:00:00Z https://doi.org/10.1186/s12936-017-2008-4 https://doaj.org/article/6a03934881ed4ede9c308189109782b3 EN eng BMC http://link.springer.com/article/10.1186/s12936-017-2008-4 https://doaj.org/toc/1475-2875 doi:10.1186/s12936-017-2008-4 1475-2875 https://doaj.org/article/6a03934881ed4ede9c308189109782b3 Malaria Journal, Vol 16, Iss 1, Pp 1-11 (2017) Host–pathogen interactions Malaria Mathematical model Parasite dynamics Plasmodium falciparum Sequestration Arctic medicine. Tropical medicine RC955-962 Infectious and parasitic diseases RC109-216 article 2017 ftdoajarticles https://doi.org/10.1186/s12936-017-2008-4 2022-12-31T05:47:31Z Abstract Background Plasmodium vivax can cause severe malaria. The total parasite biomass during infections is correlated with the severity of disease but not necessarily quantified accurately by microscopy. This finding has raised the question whether there could be sub-populations of parasites that are not observed in peripheral blood smears but continue to contribute to the increase in parasite numbers that drive pathogenesis. Non-human primate infection models utilizing the closely related simian malaria parasite Plasmodium cynomolgi hold the potential for quantifying the magnitude of possibly unobserved infected red blood cell (iRBC) populations and determining how the presence of this hidden reservoir correlates with disease severity. Methods Time series data tracking the longitudinal development of parasitaemia in five Macaca mulatta infected with P. cynomolgi were used to design a computational model quantifying iRBCs that circulate in the blood versus those that are not detectable and are termed here as ‘concealed’. This terminology is proposed to distinguish such observations from the deep vascular and widespread ‘sequestration’ of Plasmodium falciparum iRBCs, which is governed by distinctly different molecular mechanisms. Results The computational model presented here clearly demonstrates that the observed growth data of iRBC populations are not consistent with the known biology and blood-stage cycle of P. cynomolgi. However, the discrepancies can be resolved when a sub-population of concealed iRBCs is taken into account. The model suggests that the early growth of a hidden parasite sub-population has the potential to drive disease. As an alternative, the data could be explained by the sequential release of merozoites from the liver over a number of days, but this scenario seems less likely. Conclusions Concealment of a non-circulating iRBC sub-population during P. cynomolgi infection of M. mulatta is an important aspect of this successful host–pathogen relationship. The data also support the ... Article in Journal/Newspaper Arctic Directory of Open Access Journals: DOAJ Articles Arctic Malaria Journal 16 1
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Host–pathogen interactions
Malaria
Mathematical model
Parasite dynamics
Plasmodium falciparum
Sequestration
Arctic medicine. Tropical medicine
RC955-962
Infectious and parasitic diseases
RC109-216
spellingShingle Host–pathogen interactions
Malaria
Mathematical model
Parasite dynamics
Plasmodium falciparum
Sequestration
Arctic medicine. Tropical medicine
RC955-962
Infectious and parasitic diseases
RC109-216
Luis L. Fonseca
Chester J. Joyner
MaHPIC Consortium
Mary R. Galinski
Eberhard O. Voit
A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta
topic_facet Host–pathogen interactions
Malaria
Mathematical model
Parasite dynamics
Plasmodium falciparum
Sequestration
Arctic medicine. Tropical medicine
RC955-962
Infectious and parasitic diseases
RC109-216
description Abstract Background Plasmodium vivax can cause severe malaria. The total parasite biomass during infections is correlated with the severity of disease but not necessarily quantified accurately by microscopy. This finding has raised the question whether there could be sub-populations of parasites that are not observed in peripheral blood smears but continue to contribute to the increase in parasite numbers that drive pathogenesis. Non-human primate infection models utilizing the closely related simian malaria parasite Plasmodium cynomolgi hold the potential for quantifying the magnitude of possibly unobserved infected red blood cell (iRBC) populations and determining how the presence of this hidden reservoir correlates with disease severity. Methods Time series data tracking the longitudinal development of parasitaemia in five Macaca mulatta infected with P. cynomolgi were used to design a computational model quantifying iRBCs that circulate in the blood versus those that are not detectable and are termed here as ‘concealed’. This terminology is proposed to distinguish such observations from the deep vascular and widespread ‘sequestration’ of Plasmodium falciparum iRBCs, which is governed by distinctly different molecular mechanisms. Results The computational model presented here clearly demonstrates that the observed growth data of iRBC populations are not consistent with the known biology and blood-stage cycle of P. cynomolgi. However, the discrepancies can be resolved when a sub-population of concealed iRBCs is taken into account. The model suggests that the early growth of a hidden parasite sub-population has the potential to drive disease. As an alternative, the data could be explained by the sequential release of merozoites from the liver over a number of days, but this scenario seems less likely. Conclusions Concealment of a non-circulating iRBC sub-population during P. cynomolgi infection of M. mulatta is an important aspect of this successful host–pathogen relationship. The data also support the ...
format Article in Journal/Newspaper
author Luis L. Fonseca
Chester J. Joyner
MaHPIC Consortium
Mary R. Galinski
Eberhard O. Voit
author_facet Luis L. Fonseca
Chester J. Joyner
MaHPIC Consortium
Mary R. Galinski
Eberhard O. Voit
author_sort Luis L. Fonseca
title A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta
title_short A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta
title_full A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta
title_fullStr A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta
title_full_unstemmed A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta
title_sort model of plasmodium vivax concealment based on plasmodium cynomolgi infections in macaca mulatta
publisher BMC
publishDate 2017
url https://doi.org/10.1186/s12936-017-2008-4
https://doaj.org/article/6a03934881ed4ede9c308189109782b3
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_source Malaria Journal, Vol 16, Iss 1, Pp 1-11 (2017)
op_relation http://link.springer.com/article/10.1186/s12936-017-2008-4
https://doaj.org/toc/1475-2875
doi:10.1186/s12936-017-2008-4
1475-2875
https://doaj.org/article/6a03934881ed4ede9c308189109782b3
op_doi https://doi.org/10.1186/s12936-017-2008-4
container_title Malaria Journal
container_volume 16
container_issue 1
_version_ 1766346447474655232