Measuring and characterizing night time human behaviour as it relates to residual malaria transmission in sub-Saharan Africa: a review of the published literature
Abstract Background Malaria cases and deaths decreased dramatically in recent years, largely due to effective vector control interventions. Persistence of transmission after good coverage has been achieved with high-quality vector control interventions, namely insecticide-treated nets or indoor resi...
Published in: | Malaria Journal |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
BMC
2019
|
Subjects: | |
Online Access: | https://doi.org/10.1186/s12936-019-2638-9 https://doaj.org/article/67028ad5d1524362b2e1264143899da2 |
Summary: | Abstract Background Malaria cases and deaths decreased dramatically in recent years, largely due to effective vector control interventions. Persistence of transmission after good coverage has been achieved with high-quality vector control interventions, namely insecticide-treated nets or indoor residual spraying, poses a significant challenge to malaria elimination efforts. To understand when and where remaining transmission is occurring, it is necessary to look at vector and human behaviour, and where they overlap. To date, a review of human behaviour related to residual malaria transmission has not been conducted. Methods Studies were identified through PubMed and Google Scholar. Hand searches were conducted for all references cited in articles identified through the initial search. The review was limited to English language articles published between 2000 and 2017. Publications with primary data from a malaria endemic setting in sub-Saharan Africa and a description of night time human behaviours were included. Results Twenty-six publications were identified that met inclusion criteria. Study results fit into two broad categories: when and where people are exposed to malaria vectors and what people are doing at night that may increase their contact with malaria vectors. Among studies that quantified human-vector interaction, a majority of exposure occurred indoors during sleeping hours for unprotected individuals, with some variation across time, contexts, and vector species. Common night time activities across settings included household chores and entertainment during evening hours, as well as livelihood and large-scale socio-cultural events that can last throughout the night. Shifting sleeping patterns associated with travel, visitors, illness, farming practices, and outdoor sleeping, which can impact exposure and use of prevention measures, were described in some locations. Conclusions While the importance of understanding human-vector interaction is well-established, relatively few studies have included ... |
---|