A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques

Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: N. Hiranuma, S. Augustin-Bauditz, H. Bingemer, C. Budke, J. Curtius, A. Danielczok, K. Diehl, K. Dreischmeier, M. Ebert, F. Frank, N. Hoffmann, K. Kandler, A. Kiselev, T. Koop, T. Leisner, O. Möhler, B. Nillius, A. Peckhaus, D. Rose, S. Weinbruch, H. Wex, Y. Boose, P. J. DeMott, J. D. Hader, T. C. J. Hill, Z. A. Kanji, G. Kulkarni, E. J. T. Levin, C. S. McCluskey, M. Murakami, B. J. Murray, D. Niedermeier, M. D. Petters, D. O'Sullivan, A. Saito, G. P. Schill, T. Tajiri, M. A. Tolbert, A. Welti, T. F. Whale, T. P. Wright, K. Yamashita
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2015
Subjects:
Online Access:https://doi.org/10.5194/acp-15-2489-2015
https://doaj.org/article/658942d714a649919f6f1d4811b466df
id ftdoajarticles:oai:doaj.org/article:658942d714a649919f6f1d4811b466df
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:658942d714a649919f6f1d4811b466df 2023-05-15T16:55:19+02:00 A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques N. Hiranuma S. Augustin-Bauditz H. Bingemer C. Budke J. Curtius A. Danielczok K. Diehl K. Dreischmeier M. Ebert F. Frank N. Hoffmann K. Kandler A. Kiselev T. Koop T. Leisner O. Möhler B. Nillius A. Peckhaus D. Rose S. Weinbruch H. Wex Y. Boose P. J. DeMott J. D. Hader T. C. J. Hill Z. A. Kanji G. Kulkarni E. J. T. Levin C. S. McCluskey M. Murakami B. J. Murray D. Niedermeier M. D. Petters D. O'Sullivan A. Saito G. P. Schill T. Tajiri M. A. Tolbert A. Welti T. F. Whale T. P. Wright K. Yamashita 2015-03-01T00:00:00Z https://doi.org/10.5194/acp-15-2489-2015 https://doaj.org/article/658942d714a649919f6f1d4811b466df EN eng Copernicus Publications http://www.atmos-chem-phys.net/15/2489/2015/acp-15-2489-2015.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 1680-7316 1680-7324 doi:10.5194/acp-15-2489-2015 https://doaj.org/article/658942d714a649919f6f1d4811b466df Atmospheric Chemistry and Physics, Vol 15, Iss 5, Pp 2489-2518 (2015) Physics QC1-999 Chemistry QD1-999 article 2015 ftdoajarticles https://doi.org/10.5194/acp-15-2489-2015 2022-12-31T13:47:49Z Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature ( T ), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, n s , to develop a representative n s ( T ) spectrum that spans a wide temperature range (−37 °C < T < −11 °C) and covers 9 orders of magnitude in n s . In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to n s . In addition, we show evidence that the immersion freezing efficiency expressed in n s of illite NX particles is relatively independent of droplet size, particle ... Article in Journal/Newspaper inuit Directory of Open Access Journals: DOAJ Articles Atmospheric Chemistry and Physics 15 5 2489 2518
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Physics
QC1-999
Chemistry
QD1-999
spellingShingle Physics
QC1-999
Chemistry
QD1-999
N. Hiranuma
S. Augustin-Bauditz
H. Bingemer
C. Budke
J. Curtius
A. Danielczok
K. Diehl
K. Dreischmeier
M. Ebert
F. Frank
N. Hoffmann
K. Kandler
A. Kiselev
T. Koop
T. Leisner
O. Möhler
B. Nillius
A. Peckhaus
D. Rose
S. Weinbruch
H. Wex
Y. Boose
P. J. DeMott
J. D. Hader
T. C. J. Hill
Z. A. Kanji
G. Kulkarni
E. J. T. Levin
C. S. McCluskey
M. Murakami
B. J. Murray
D. Niedermeier
M. D. Petters
D. O'Sullivan
A. Saito
G. P. Schill
T. Tajiri
M. A. Tolbert
A. Welti
T. F. Whale
T. P. Wright
K. Yamashita
A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques
topic_facet Physics
QC1-999
Chemistry
QD1-999
description Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature ( T ), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, n s , to develop a representative n s ( T ) spectrum that spans a wide temperature range (−37 °C < T < −11 °C) and covers 9 orders of magnitude in n s . In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to n s . In addition, we show evidence that the immersion freezing efficiency expressed in n s of illite NX particles is relatively independent of droplet size, particle ...
format Article in Journal/Newspaper
author N. Hiranuma
S. Augustin-Bauditz
H. Bingemer
C. Budke
J. Curtius
A. Danielczok
K. Diehl
K. Dreischmeier
M. Ebert
F. Frank
N. Hoffmann
K. Kandler
A. Kiselev
T. Koop
T. Leisner
O. Möhler
B. Nillius
A. Peckhaus
D. Rose
S. Weinbruch
H. Wex
Y. Boose
P. J. DeMott
J. D. Hader
T. C. J. Hill
Z. A. Kanji
G. Kulkarni
E. J. T. Levin
C. S. McCluskey
M. Murakami
B. J. Murray
D. Niedermeier
M. D. Petters
D. O'Sullivan
A. Saito
G. P. Schill
T. Tajiri
M. A. Tolbert
A. Welti
T. F. Whale
T. P. Wright
K. Yamashita
author_facet N. Hiranuma
S. Augustin-Bauditz
H. Bingemer
C. Budke
J. Curtius
A. Danielczok
K. Diehl
K. Dreischmeier
M. Ebert
F. Frank
N. Hoffmann
K. Kandler
A. Kiselev
T. Koop
T. Leisner
O. Möhler
B. Nillius
A. Peckhaus
D. Rose
S. Weinbruch
H. Wex
Y. Boose
P. J. DeMott
J. D. Hader
T. C. J. Hill
Z. A. Kanji
G. Kulkarni
E. J. T. Levin
C. S. McCluskey
M. Murakami
B. J. Murray
D. Niedermeier
M. D. Petters
D. O'Sullivan
A. Saito
G. P. Schill
T. Tajiri
M. A. Tolbert
A. Welti
T. F. Whale
T. P. Wright
K. Yamashita
author_sort N. Hiranuma
title A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques
title_short A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques
title_full A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques
title_fullStr A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques
title_full_unstemmed A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques
title_sort comprehensive laboratory study on the immersion freezing behavior of illite nx particles: a comparison of 17 ice nucleation measurement techniques
publisher Copernicus Publications
publishDate 2015
url https://doi.org/10.5194/acp-15-2489-2015
https://doaj.org/article/658942d714a649919f6f1d4811b466df
genre inuit
genre_facet inuit
op_source Atmospheric Chemistry and Physics, Vol 15, Iss 5, Pp 2489-2518 (2015)
op_relation http://www.atmos-chem-phys.net/15/2489/2015/acp-15-2489-2015.pdf
https://doaj.org/toc/1680-7316
https://doaj.org/toc/1680-7324
1680-7316
1680-7324
doi:10.5194/acp-15-2489-2015
https://doaj.org/article/658942d714a649919f6f1d4811b466df
op_doi https://doi.org/10.5194/acp-15-2489-2015
container_title Atmospheric Chemistry and Physics
container_volume 15
container_issue 5
container_start_page 2489
op_container_end_page 2518
_version_ 1766046295761354752