Light traps fail to estimate reliable malaria mosquito biting rates on Bioko Island, Equatorial Guinea

Abstract Background The human biting rate (HBR), an important parameter for assessing malaria transmission and evaluating vector control interventions, is commonly estimated by human landing collections (HLC). Although intense efforts have been made to find alternative non-exposure mosquito collecti...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Overgaard Hans J, Sæbø Solve, Reddy Michael R, Reddy Vamsi P, Abaga Simon, Matias Abrahan, Slotman Michel A
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2012
Subjects:
Online Access:https://doi.org/10.1186/1475-2875-11-56
https://doaj.org/article/628190a89df548b0a02e4aa954d4559e
Description
Summary:Abstract Background The human biting rate (HBR), an important parameter for assessing malaria transmission and evaluating vector control interventions, is commonly estimated by human landing collections (HLC). Although intense efforts have been made to find alternative non-exposure mosquito collection methods, HLC remains the standard for providing reliable and consistent HBRs. The aim of this study was to assess the relationship between human landing and light trap collections (LTC), in an attempt to estimate operationally feasible conversion factors between the two. The study was conducted as part of the operational research component of the Bioko Island Malaria Control Project (BIMCP), Equatorial Guinea. Methods Malaria mosquitoes were collected indoors and outdoors by HLCs and LTCs in three villages on Bioko Island, Equatorial Guinea during five bimonthly collections in 2009. Indoor light traps were suspended adjacent to occupied long-lasting, insecticide-treated bed nets. Outdoor light traps were placed close to the outer wall under the roof of the collection house. Collected specimens were subjected to DNA extraction and diagnostic PCR to identify species within the Anopheles gambiae complex. Data were analysed by simple regression of log-transformed values and by Bayesian regression analysis. Results There was a poor correlation between the two collection methods. Results varied by location, venue, month, house, but also by the statistical method used. The more robust Bayesian analyses indicated non-linear relationships and relative sampling efficiencies being density dependent for the indoor collections, implying that straight-forward and simple conversion factors could not be calculated for any of the locations. Outdoor LTC:HLC relationships were weak, but could be estimated at 0.10 and 0.07 for each of two locations. Conclusions Light trap collections in combination with bed nets are not recommended as a reliable method to assess human biting rates on Bioko Island. Different statistical analyses ...