Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling
About 20 % of all snow accumulation in Antarctica occurs on the ice shelves. There, ice rises control the spatial surface mass balance (SMB) distribution by inducing snowfall variability and wind erosion due to their topography. Moreover these ice rises buttress the ice flow and represent ideal dril...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2020
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-14-3367-2020 https://doaj.org/article/625b61533f484666b9dc9a3232c7edf2 |
id |
ftdoajarticles:oai:doaj.org/article:625b61533f484666b9dc9a3232c7edf2 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:625b61533f484666b9dc9a3232c7edf2 2023-05-15T13:46:49+02:00 Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling T. Kausch S. Lhermitte J. T. M. Lenaerts N. Wever M. Inoue F. Pattyn S. Sun S. Wauthy J.-L. Tison W. J. van de Berg 2020-10-01T00:00:00Z https://doi.org/10.5194/tc-14-3367-2020 https://doaj.org/article/625b61533f484666b9dc9a3232c7edf2 EN eng Copernicus Publications https://tc.copernicus.org/articles/14/3367/2020/tc-14-3367-2020.pdf https://doaj.org/toc/1994-0416 https://doaj.org/toc/1994-0424 doi:10.5194/tc-14-3367-2020 1994-0416 1994-0424 https://doaj.org/article/625b61533f484666b9dc9a3232c7edf2 The Cryosphere, Vol 14, Pp 3367-3380 (2020) Environmental sciences GE1-350 Geology QE1-996.5 article 2020 ftdoajarticles https://doi.org/10.5194/tc-14-3367-2020 2022-12-30T22:42:05Z About 20 % of all snow accumulation in Antarctica occurs on the ice shelves. There, ice rises control the spatial surface mass balance (SMB) distribution by inducing snowfall variability and wind erosion due to their topography. Moreover these ice rises buttress the ice flow and represent ideal drilling locations for ice cores. In this study we assess the connection between snowfall variability and wind erosion to provide a better understanding of how ice rises impact SMB variability, how well this is captured in the regional atmospheric climate model RACMO2 and the implications of this SMB variability for ice rises as an ice core drilling site. By combining ground-penetrating radar (GPR) profiles from two ice rises in Dronning Maud Land with ice core dating, we reconstruct spatial and temporal SMB variations from 1983 to 2018 and compare the observed SMB with output from RACMO2 and SnowModel. Our results show snowfall-driven differences of up to 1.5 times higher SMB on the windward side of both ice rises than on the leeward side as well as a local erosion-driven minimum at the ice divide of the ice rises. RACMO2 captures the snowfall-driven differences but overestimates their magnitude, whereas the erosion on the peak can be reproduced by SnowModel with RACMO2 forcing. Observed temporal variability of the average SMBs, retrieved from the GPR data for four time intervals in the 1983–2018 range, are low at the peak of the easternmost ice rise ( ∼0.06 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn ... Article in Journal/Newspaper Antarc* Antarctic Antarctica Dronning Maud Land ice core Ice Shelves The Cryosphere Directory of Open Access Journals: DOAJ Articles Antarctic Dronning Maud Land Buttress ENVELOPE(-57.083,-57.083,-63.550,-63.550) The Cryosphere 14 10 3367 3380 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Environmental sciences GE1-350 Geology QE1-996.5 |
spellingShingle |
Environmental sciences GE1-350 Geology QE1-996.5 T. Kausch S. Lhermitte J. T. M. Lenaerts N. Wever M. Inoue F. Pattyn S. Sun S. Wauthy J.-L. Tison W. J. van de Berg Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling |
topic_facet |
Environmental sciences GE1-350 Geology QE1-996.5 |
description |
About 20 % of all snow accumulation in Antarctica occurs on the ice shelves. There, ice rises control the spatial surface mass balance (SMB) distribution by inducing snowfall variability and wind erosion due to their topography. Moreover these ice rises buttress the ice flow and represent ideal drilling locations for ice cores. In this study we assess the connection between snowfall variability and wind erosion to provide a better understanding of how ice rises impact SMB variability, how well this is captured in the regional atmospheric climate model RACMO2 and the implications of this SMB variability for ice rises as an ice core drilling site. By combining ground-penetrating radar (GPR) profiles from two ice rises in Dronning Maud Land with ice core dating, we reconstruct spatial and temporal SMB variations from 1983 to 2018 and compare the observed SMB with output from RACMO2 and SnowModel. Our results show snowfall-driven differences of up to 1.5 times higher SMB on the windward side of both ice rises than on the leeward side as well as a local erosion-driven minimum at the ice divide of the ice rises. RACMO2 captures the snowfall-driven differences but overestimates their magnitude, whereas the erosion on the peak can be reproduced by SnowModel with RACMO2 forcing. Observed temporal variability of the average SMBs, retrieved from the GPR data for four time intervals in the 1983–2018 range, are low at the peak of the easternmost ice rise ( ∼0.06 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn ... |
format |
Article in Journal/Newspaper |
author |
T. Kausch S. Lhermitte J. T. M. Lenaerts N. Wever M. Inoue F. Pattyn S. Sun S. Wauthy J.-L. Tison W. J. van de Berg |
author_facet |
T. Kausch S. Lhermitte J. T. M. Lenaerts N. Wever M. Inoue F. Pattyn S. Sun S. Wauthy J.-L. Tison W. J. van de Berg |
author_sort |
T. Kausch |
title |
Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling |
title_short |
Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling |
title_full |
Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling |
title_fullStr |
Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling |
title_full_unstemmed |
Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling |
title_sort |
impact of coastal east antarctic ice rises on surface mass balance: insights from observations and modeling |
publisher |
Copernicus Publications |
publishDate |
2020 |
url |
https://doi.org/10.5194/tc-14-3367-2020 https://doaj.org/article/625b61533f484666b9dc9a3232c7edf2 |
long_lat |
ENVELOPE(-57.083,-57.083,-63.550,-63.550) |
geographic |
Antarctic Dronning Maud Land Buttress |
geographic_facet |
Antarctic Dronning Maud Land Buttress |
genre |
Antarc* Antarctic Antarctica Dronning Maud Land ice core Ice Shelves The Cryosphere |
genre_facet |
Antarc* Antarctic Antarctica Dronning Maud Land ice core Ice Shelves The Cryosphere |
op_source |
The Cryosphere, Vol 14, Pp 3367-3380 (2020) |
op_relation |
https://tc.copernicus.org/articles/14/3367/2020/tc-14-3367-2020.pdf https://doaj.org/toc/1994-0416 https://doaj.org/toc/1994-0424 doi:10.5194/tc-14-3367-2020 1994-0416 1994-0424 https://doaj.org/article/625b61533f484666b9dc9a3232c7edf2 |
op_doi |
https://doi.org/10.5194/tc-14-3367-2020 |
container_title |
The Cryosphere |
container_volume |
14 |
container_issue |
10 |
container_start_page |
3367 |
op_container_end_page |
3380 |
_version_ |
1766245252775018496 |