Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.

Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned th...

Full description

Bibliographic Details
Published in:PLOS ONE
Main Authors: Ted W Cranford, Petr Krysl
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2015
Subjects:
R
Q
Online Access:https://doi.org/10.1371/journal.pone.0116222
https://doaj.org/article/615850a79bd84893a681e9e2464efd7b
id ftdoajarticles:oai:doaj.org/article:615850a79bd84893a681e9e2464efd7b
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:615850a79bd84893a681e9e2464efd7b 2023-05-15T15:36:40+02:00 Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing. Ted W Cranford Petr Krysl 2015-01-01T00:00:00Z https://doi.org/10.1371/journal.pone.0116222 https://doaj.org/article/615850a79bd84893a681e9e2464efd7b EN eng Public Library of Science (PLoS) http://europepmc.org/articles/PMC4310601?pdf=render https://doaj.org/toc/1932-6203 1932-6203 doi:10.1371/journal.pone.0116222 https://doaj.org/article/615850a79bd84893a681e9e2464efd7b PLoS ONE, Vol 10, Iss 1, p e0116222 (2015) Medicine R Science Q article 2015 ftdoajarticles https://doi.org/10.1371/journal.pone.0116222 2022-12-31T02:23:53Z Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (Balaenoptera physalus) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale's head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies. Article in Journal/Newspaper Balaenoptera physalus baleen whale baleen whales Fin whale Directory of Open Access Journals: DOAJ Articles PLOS ONE 10 1 e0116222
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ted W Cranford
Petr Krysl
Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.
topic_facet Medicine
R
Science
Q
description Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (Balaenoptera physalus) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale's head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.
format Article in Journal/Newspaper
author Ted W Cranford
Petr Krysl
author_facet Ted W Cranford
Petr Krysl
author_sort Ted W Cranford
title Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.
title_short Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.
title_full Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.
title_fullStr Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.
title_full_unstemmed Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.
title_sort fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.
publisher Public Library of Science (PLoS)
publishDate 2015
url https://doi.org/10.1371/journal.pone.0116222
https://doaj.org/article/615850a79bd84893a681e9e2464efd7b
genre Balaenoptera physalus
baleen whale
baleen whales
Fin whale
genre_facet Balaenoptera physalus
baleen whale
baleen whales
Fin whale
op_source PLoS ONE, Vol 10, Iss 1, p e0116222 (2015)
op_relation http://europepmc.org/articles/PMC4310601?pdf=render
https://doaj.org/toc/1932-6203
1932-6203
doi:10.1371/journal.pone.0116222
https://doaj.org/article/615850a79bd84893a681e9e2464efd7b
op_doi https://doi.org/10.1371/journal.pone.0116222
container_title PLOS ONE
container_volume 10
container_issue 1
container_start_page e0116222
_version_ 1766367038510465024